
Technical Report

OpenMobile API:

Accessing the UICC on Android Devices

Michael Roland

University of Applied Sciences Upper Austria
Josef Ressel Center u’smile

michael.roland@fh-hagenberg.at

Michael Hölzl

Johannes Kepler University Linz
Institute of Networks and Security

hoelzl@ins.jku.at

Abstract This report gives an overview of secure element integration into
Android devices. It focuses on the Open Mobile API as an open interface to
access secure elements from Android applications. The overall architecture
of the Open Mobile API is described and current Android devices are ana-
lyzed with regard to the availability of this API. Moreover, this report summa-
rizes our efforts of reverse engineering the stock ROM of a Samsung Galaxy
S3 in order to analyze the integration of the Open Mobile API and the in-
terface that is used to perform APDU-based communication with the UICC
(Universal Integrated Circuit Card). It further provides a detailed explanation
on how to integrate this functionality into CyanogenMod (an after-market
firmware for Android devices).

This work has been carried out within the scope of “u’smile”, the Josef Ressel
Center for User-Friendly Secure Mobile Environments, funded by the Chris-
tian Doppler Gesellschaft, A1 Telekom Austria AG, Drei-Banken-EDV GmbH,
LG Nexera Business Solutions AG, NXP Semiconductors Austria GmbH, and
Österreichische Staatsdruckerei GmbH in cooperation with the Institute of Net-
works and Security at the Johannes Kepler University Linz. Moreover, this work
has been carried out in close cooperation with the project “High Speed RFID”
within the EU programme “Regionale Wettbewerbsfähigkeit OÖ 2007–2013
(Regio 13)” funded by the European Regional Development Fund (ERDF) and
the Province of Upper Austria (Land Oberösterreich).

Revision 1.0

January 11, 2016

mailto:michael.roland@fh-hagenberg.at
mailto:hoelzl@ins.jku.at

|3

Contents

1. Introduction 5

2. Secure Element Integration 7
2.1 Embedded Secure Element . 7
2.2 Universal Integrated Circuit Card (UICC) 9
2.3 Micro SD Card (smartSD/ASSD) . 10

3. Open Mobile API 13
3.1 Overall Architecture . 13
3.2 Secure Element Access Control . 14
3.3 An Implementation: SEEK-for-Android Smartcard API 15
3.4 Secure Element Provider Interface before Version 4.0.0 17

3.4.1 Integration as Compiled-In Terminal 17
3.4.2 Integration as Add-On Terminal 17
3.4.3 Interface Methods . 17

3.5 Secure Element Provider Interface since Version 4.0.0 19
3.5.1 Service Interface . 19
3.5.2 Differentiation between System and Add-on Terminals 21

3.6 Availability in Devices . 21

4. Reverse-Engineering Android Applications 25
4.1 Tools . 25
4.2 Using the Tools . 26

4.2.1 Downloading Files from the Device 26
4.2.2 Preparing the Framework Files 27
4.2.3 De-optimizing Dalvik Executables 27
4.2.4 Unpacking Application Packages 28
4.2.5 Converting Dalvik Bytecode to Java Bytecode 28
4.2.6 Decompiling Java Bytecode 28

4.3 Interpreting Decompiled Code: Results 28

5. SEEK on the Galaxy S3 33
5.1 Open Mobile API Framework . 33
5.2 Smartcard System Service . 33
5.3 UICC Terminal Interface . 33
5.4 Telephony System Service . 35

5.4.1 RIL_REQUEST_OEM_HOOK_RAW 36
5.4.2 Getting the Answer-to-Reset 37
5.4.3 Opening a Logical Channel 37
5.4.4 Closing a Logical Channel . 37
5.4.5 Exchanging an APDU Command on the Basic Channel 38
5.4.6 Exchanging an APDU Command on a Logical Channel 38

4 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

6. Adding UICC Terminal Support to CyanogenMod 41
6.1 CyanogenMod 11.0 for the Samsung Galaxy S3 41
6.2 Patches to Include SEEK-for-Android 42
6.3 Enabling UICC Access through SEEK 43

6.3.1 Radio Interface Layer . 43
6.3.2 Telephony System Service . 48
6.3.3 Smartcard System Service . 49

6.4 Building CyanogenMod . 50

7. Summary and Outlook 51

References 53

Appendix A. Reverse-Engineering Examples 55
A.1 Method IccUtils.bytesToHexString() 55

A.1.1 Smali Assembler . 55
A.1.2 Generated Java Source Code 56
A.1.3 Java Source Code Enriched with Information from Disassembly 56

A.2 Method PhoneInterfaceManager.openIccLogicalChannel() 57
A.2.1 Smali Assembler . 57
A.2.2 Generated Java Source Code 58
A.2.3 Java Source Code Enriched with Information from Disassembly 59

A.3 Method IccIoResult.getException() 59
A.3.1 Smali Assembler . 59
A.3.2 Generated Java Source Code 61
A.3.3 Java Source Code Enriched with Information from Disassembly 61

Appendix B. Implementation: Telephony System Service 63
B.1 Class PhoneInterfaceManager . 63
B.2 Class IccIoResult . 74
B.3 Class IccUtils . 75

INTRODUCTION |5

1. Introduction

The Open Mobile API [18] is created and maintained by SIMalliance, a non-profit
trade association that aims at creating secure, open and interoperable mobile ser-
vices. It defines a platform-independent architecture for interfacing secure elements
on mobile devices and specifies a programming language independent API for in-
tegrating secure element access into mobile applications. Using the Open Mobile
API, mobile applications can interact with secure elements of virtually any form-
factor integrated in mobile devices, e.g. an embedded secure element, a universal
integrated circuit card (UICC), or an advanced security (micro) SD card (ASSD).
Consequently, developers can make use of enhanced security capabilities provided
by such secure elements.

The project “Secure Element Evaluation Kit for the Android platform” (SEEK-
for-Android, [4]) provides the “Smartcard API” as an open-source implementation
of the Open Mobile API specification for the Android operating system platform.
The project releases patches to integrate the Smartcard API into the Android Open
Source Platform (AOSP). These patches include the smartcard subsystem (consist-
ing of the smartcard system service and the smartcard API framework) and interface
modules to access different forms of secure elements (an ASSD, an embedded secure
element that is accessible through Android’s proprietary secure element API, and
a UICC accessible through the radio interface layer (RIL) with standardized AT
commands [3, 7]).

Meanwhile, many smartphones (in particular those by Samsung and Sony) ship with
an implementation of the Open Mobile API in their stock ROM. These implemen-
tations give access to a UICC-based secure element and (on some devices) also to
an embedded secure element. The vendor-specific implementations look similar to
the SEEK implementation and differ only slightly in their behavior (e.g. access con-
trol mechanisms). Due to the standardized API definition, apps compiled against
the SEEK smartcard API framework seamlessly integrate with the vendor-specific
implementations shipped in stock ROMs.

Unfortunately, there is a gap between the open-source implementation provided by
SEEK and the vendor-specific implementations provided in stock ROMs: the secure
element interface modules. Particularly interfacing the UICC through the baseband
modem is not well standardized. The baseband modem is accessed through the radio
interface layer (RIL) which comprises of a vendor-specific low-level library, a RIL
system daemon, and the telephony framework. The RIL is a device-specific closed-
source component and varies between hardware-platforms. As a consequence, the
SEEK implementation of the UICC interface module is not compatible with these
proprietary interfaces and, therefore, is not usable with devices in the field. While
this does not pose a problem when the smartcard API is used with the stock ROM
shipped by the device manufacturer, it effectively prevents access to the UICC on

6 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

custom ROMs and alternative Android distributions (like CyanogenMod1).

This is exactly what happened to us on the Samsung Galaxy S3. The stock ROM
supports access to the UICC—and, after properly configuring the access control
policies on our SIM cards, we could easily access them through the smartcard API.
However, as soon as we switched over to CyanogenMod (or our custom “SuperSmile”
ROM2, which is based on SuperNexus and borrows the RIL implementations from
the CyanogenMod project) we were no longer able to access the UICC. Even though
we added the whole SEEK implementation including the interface module for UICC-
access to our custom build, the proprietary RIL implementation on the Samsung
Galaxy S3 does not provide the necessary extensions that are expected by the SEEK
implementation.

As we needed access to a UICC-based secure element on our customizable ROM, we
decided to analyze and reverse-engineer the implementation that is integrated into
Samsung’s stock ROM in order to build our own UICC interface module.

This report gives an overview of secure element integration into Android devices.
It provides a deep insight of how secure element hardware is embedded into smart-
phones and how these secure elements can be accessed by applications on current
Android devices. The focus of this report is on the Open Mobile API as an open
middleware layer to access secure elements. We describe the overall architecture of
the Open Mobile API and how this architecture is integrated into Android devices.
Current Android devices are analyzed with regard to the availability of the Open
Mobile API. Finally, we summarize our efforts of reverse engineering the stock ROM
of a Samsung Galaxy S3 in order to evaluate the integration of the Open Mobile
API in an existing device. We analyze the interface that is used to perform APDU-
based communication with the UICC and provide a detailed explanation on how to
integrate this functionality into CyanogenMod in order to enable UICC-access in a
custom ROM.

1http://www.cyanogenmod.org/
2SuperSmile ROM: https://usmile.at/downloads

http://www.cyanogenmod.org/
https://usmile.at/downloads

SECUREELEMENT INTEGRATION |7

2. Secure Element Integration

A secure element (SE) is a secure, tamper-resistant smartcard microchip that is
integrated into a mobile device. In NFC card emulation mode, the SE is used to
emulate a contactless smartcard over the RF front-end of the NFC controller. The
NFC controller routes all3 communication to the secure element in that case. More-
over, an SE can be accessed by apps running on the main application processor.
Hence, apps can take advantage of security features and applications running on the
secure element.
A secure element can be a dedicated microchip that is embedded into the mobile
device hardware (embedded SE). Another possibility is the combination of the secure
element functionality with another smartcard/security device that is used within the
mobile device. For instance, a UICC (also known as the subscriber identity module,
SIM card) is a smartcard that is already present in many mobile devices (particularly
in mobile phones). Another security device that is available equipped with smartcard
technology is micro SD (secure digital) cards.
Many secure elements (e.g. NXP’s SmartMX) are standard smartcard ICs as used
for regular contact and contactless smartcards. They share the same hardware and
software platforms. The only difference is the interface they provide: Instead of (or
in addition to) a classic smartcard interface according to ISO/IEC 7816 (for contact
cards) or an antenna with an interface according to ISO/IEC 14443 (for contactless
cards), the secure element has a direct interface for the connection to the NFC
controller. Such interfaces are, for instance, the NFC Wired Interface (NFC-WI, [1])
and the Single Wire Protocol (SWP, [2]).

2.1 Embedded Secure Element

Various NFC-enabled mobile devices ship with an embedded secure element that is
soldered into the mobile device hardware. Sometimes an embedded SE is combined
into a single package with the NFC controller. An example for such a combined
chip module is NXP’s PN65N which contains a PN544 NFC controller and a secure
element from NXP’s SmartMX series.
Figure 1 shows the interconnection of the components in a mobile device with em-
bedded SE on both a physical and a logical layer. An embedded SE is usually only
wired to the NFC controller and it uses the NFC controller as its gateway to the out-
side world. Typical interfaces for connecting an embedded SE to the NFC controller
are [17]

3Current NFC controllers are capable of dynamically routing card emulation communication to
multiple secure elements and the host controller (main application processor) based on a routing
table (cf. [11]). The routing decision can be based on application identifiers and on RF protocol
types and parameters.

8 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

(a) physical interconnection (b) logical interconnection

Figure 1: Embedded secure element in a mobile device

• NFC Wired Interface (NFC-WI),

• S2C (NXP’s proprietary predecessor of NFC-WI),

• Single Wire Protocol (SWP),

• Digital Contact Less Bridge (DCLB),

• ISO/IEC 7816 (standard smartcard interface),

• Serial Peripheral Interface (SPI), and

• Inter-Integrated Circuit Bus (I2C).

In external card emulation mode, the secure element is accessed over the contactless
interface (ISO/IEC 14443) of the NFC controller. The NFC controller acts as the RF
modem and routes communication from the RF antenna to the secure element chip.
In internal card emulation mode, apps running on the main application processor
access the secure element by using the NFC controller as a gateway that forwards
communication to the SE. The NFC controller typically tags the communication so
that the SE can distinguish between external and internal card emulation mode.

SECUREELEMENT INTEGRATION |9

(a) physical interconnection (b) logical interconnection

Figure 2: UICC-based secure element in a mobile device

2.2 Universal Integrated Circuit Card (UICC)

Many mobile devices (particularly smartphones) have support for a pluggable uni-
versal integrated circuit card (UICC) that provides the identity for access to mobile
networks. In an NFC-enabled mobile device, a special UICC with support for single
wire protocol (SWP) and support for application loading in the field can be used as
an NFC secure element.

Figure 2 shows the interconnection of the components in a mobile device with UICC-
based SE on both a physical and a logical layer. As with any other device that
contains a UICC (or SIM card), the UICC is connected to the baseband processor
over its ISO/IEC 7816 contact smartcard interface. In addition, an NFC-enabled
UICC is directly connected to the NFC controller through the SWP interface.

In external card emulation mode, the UICC-based secure element is accessed over
the contactless interface (ISO/IEC 14443) of the NFC controller. The NFC controller
acts as the RF modem and routes communication from the RF antenna over the
SWP connection to the UICC. In internal card emulation mode, apps running on the
main application processor access the UICC-based secure element through the radio
interface layer (RIL) by using the baseband processor as a gateway that forwards
communication to the UICC over the ISO/IEC 7816 contact smartcard interface.

As the NFC controller is not used for internal card emulation using the UICC, this

10 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

Figure 3: UICC-based secure element in a mobile device without NFC

scenario is also viable on devices without an NFC controller. Hence, apps running
on the application processor could still take advantage of the UICC as secure storage
and trusted execution environment even if a device does not support NFC. In that
case, the UICC is only connected to the baseband processor (see Fig. 3). Conse-
quently, the UICC does not need have an SWP interface. The only requirement is
that the radio interface layer (RIL) and the baseband provide APDU (application
protocol data unit) based access to the UICC.

2.3 Micro SD Card (smartSD/ASSD)

The standardized way of integrating an SD card based secure element are smartSD
memory cards [16]. These micro SD cards permit APDU-based access from the
application processor to the smartcard functionality in internal card emulation mode
through the Advanced Security Secure Digital (ASSD, [14]) extension to the SD card
interface and/or through a proprietary interface based on file-system I/O commands.

For external card emulation, a smartSD card may share the contactless front-end
with the NFC controller—comparable to the UICC scenario—over single wire pro-
tocol in an NFC-enabled mobile device (see Fig. 4). An addendum [15] to the SD
specification defines how a micro SD card can expose the necessary pin for the SWP
interface. However, this only works if the mobile device has an NFC controller, and
if the SD card slot of the mobile device also connects that SWP pin to the NFC
controller, which is not the case in most mobile devices.

Instead of support for SWP, some smartSD cards contain their own contactless
front-end (see Fig. 5). This permits integration of the smartSD card into virtually
any device. Depending on the card, the antenna can be either embedded directly
into the micro SD card (and possibly extended through a passive antenna booster)

SECUREELEMENT INTEGRATION |11

(a) physical interconnection (b) logical interconnection

Figure 4: smartSD card with SWP support in a mobile device

(a) physical interconnection (b) logical interconnection

Figure 5: smartSD card with direct RF interface in a mobile device

12 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

Figure 6: smartSD card in a mobile device without using NFC capabilities

or it can be embedded into the mobile device and attached to dedicated pins of the
SD card. Using such a card that exposes its own RF interface in an NFC-enabled
device usually leads to the problem that the smartSD card may be discovered by the
reader/writer capabilities of the NFC device. This depends on the position of the
NFC antennas and may even only happen when the NFC reader antenna and the
antenna of the smartSD card are inductively coupled to each other by an externally
applied resonant circuit (e.g. an NFC tag). Consequently, such cards should not be
used in NFC-enabled mobile devices.

As with the UICC scenario, a smartSD card may be used exclusively for providing
the advantages of a secure element (secure storage, trusted execution environment)
to apps running on the application processor in internal card emulation mode. In
that case, the smartSD card is only connected to the application processor through
the regular SD interface (see Fig. 6).

OPENMOBILE API |13

3. Open Mobile API

The Open Mobile API [18] is a specification created and maintained by SIMalliance,
a non-profit trade association that aims at creating secure, open and interoperable
mobile services. It defines a platform-independent middleware architecture between
apps and secure elements on mobile devices, and specifies a programming language
independent API for integrating secure element access into mobile applications.

3.1 Overall Architecture

The overall architecture of the Open Mobile API is shown in Fig. 7. The Open
Mobile API consists of service APIs, a core transport API, and secure element
provider driver modules.

The core component is the transport API which provides APDU-based connections
to secure element applets. The transport API consists of four classes: SEService,
Reader, Session and Channel. The SEService manages all secure element slots in
a mobile device. Each secure element slot matches one secure element driver module
and, therefore, corresponds to one secure element. Each slot is represented by an
instance of the Reader class. The Reader class has methods to check the availability
of the slot’s secure element and to establish a session to the secure element. Once
a session is established it is represented by a Session object. The Session class
provides methods to obtain the answer-to-reset (ATR) of the secure element and to
open APDU-based communication channels to applets on the secure element. Each

Figure 7: Architectural overview of the Open Mobile API [12, 18]

14 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

communication channel is represented by a Channel object. The Channel class has
a transmit method to exchange APDUs.

The service API is a collection of multiple service modules. Each module provides
an application-specific abstraction of the transport layer. Thus, instead of low-level
communication through APDUs, high-level methods can be defined for specific ap-
plications. For example, an authentication service API could provide methods for
PIN code management and verification. Similarly, a file management service API
could provide high-level methods to create, write, and read files in a smartcard file
system.

An access control enforcer between the transport API and the secure element
providers ensures that access restrictions to secure elements are obeyed. The secu-
rity mechanism for access control enforcement is defined by GlobalPlatform’s Secure
Element Access Control specification [8].

The secure element provider interface defines an abstraction layer to add arbitrary
secure element driver modules (each representing a secure element). These driver
modules can be statically integrated into the system as well as dynamically loaded
by third-party apps at runtime.

3.2 Secure Element Access Control

The access control enforcer is not part of the Open Mobile API itself. Instead,
the Open Mobile API specification references to GlobalPlatform’s Secure Element
Access Control [8] specification. That specification defines a sophisticated security
scheme for secure element APIs to prevent secure element access by unauthorized
applications.

The architecture of the access control scheme is depicted in Fig. 8. The core compo-
nent of the access control scheme is the access control enforcer. The enforcer resides
within the secure element API (cf. Open Mobile API) and acts as a gatekeeper be-
tween apps on the mobile device and the secure element. Access control decisions
are based on access control rules. Each rule defines access rights for a specific secure
element applet based on its application identifier (AID) and a specific app or a spe-
cific group of apps on the mobile device based on their certificates. Moreover, rules
may be applied to any secure element application without a specific AID and to
mobile device apps without a specific certificate. Access rights can grant and deny
access to all APDUs, to specific APDUs and to event notifications.

The access control enforcer reads the access control rules from a database on the
secure element. Different methods for access to the database exist. The database
can be a simple file, the access rule file (ARF), which is accessible through file
access APDUs. The preferred way, however, is an access rule application (ARA).
As the access rule databases may be distributed across multiple security domains

OPENMOBILE API |15

Figure 8: Secure Element Access Control Architecture [8]

owned and managed over-the-air by multiple entities, the ARA-M (ARA master)
aggregates all these individually managed databases (ARA-C, ARA clients) and
provides a standardized interface for the access control enforcer. Over-the-air (OTA)
management of ARA-C databases is comparable to the OTA management of secure
element applications.

When an app running on the application processor tries to access an applet on the
secure element, the access control enforcer retrieves the app certificate from the
application manager of the mobile device operating system and looks up the access
rules for that certificate (or its certificate chain) and the selected applet AID. Based
on these rules, access control is enforced for each transmitted APDU.

While the access policies themselves are stored on the secure element, the Glob-
alPlatform Secure Element Access Control delegates access control decisions to the
operating system (or the secure element API) on the application processor of the
mobile device. Hence, access control is delegated to a component with much less
stringent security requirements. See [12] for a discussion of the implications of this
delegation for secure element applications.

3.3 An Implementation: SEEK-for-Android Smartcard API

The project “Secure Element Evaluation Kit for the Android platform” (SEEK-
for-Android, [4]) has been launched and is maintained by Giesecke & Devrient and
provides the “Smartcard API” as an open-source implementation of the Open Mobile
API specification for the Android operating system platform. The Smartcard API
is released in the form of patches to the Android Open Source Platform (AOSP) as

16 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

Figure 9: SEEK-for-Android Smartcard API (v3.1.0) within the Android platform

well as in the form of a series of GIT repositories4 hosted on GitHub. Moreover, the
SEEK-for-Android project provides add-ons for the Android SDK to integrate the
Open Mobile API into Android applications and to simplify compilation against the
Open Mobile API framework classes [5].

Figure 9 gives an overview of SEEK version 3.1.0 within the Android platform. The
smartcard subsystem consists of the smartcard system service and the Open Mobile
API framework. SEEK includes secure element interface modules (“terminals”) for
access to different forms of secure elements:

• An ASSD terminal provides access to a smartSD card under the assumption
that the SD kernel driver supports ASSD commands.

• An eSE terminal provides access to an embedded secure element (eSE) that is
accessible through Android’s proprietary secure element API (com.android.
nfc_extras).

• A UICC terminal provides access to the UICC through the telephony frame-
work, given that the radio interface layer (RIL) supports standardized AT
commands for APDU-based access to the UICC (cf. [3, 6, 7]).

4https://github.com/seek-for-android

https://github.com/seek-for-android

OPENMOBILE API |17

3.4 Secure Element Provider Interface before Version 4.0.0

The Open Mobile API specification leaves the definition of the secure element
provider interface open to the actual implementation of the Open Mobile API.
Therefore, the secure element provider interface may vary between different im-
plementations.

The SEEK-for-Android implementation supports two types of interface modules
(so-called “terminals”):

1. terminals that are compiled into the smartcard system service, and

2. add-on terminals that can be added during runtime through Android applica-
tion packages.

3.4.1 Integration as Compiled-In Terminal

The SEEK smartcard service can be bundled with SE terminal interface mod-
ules at compile-time. A terminal is a class that extends the abstract class org.
simalliance.openmobileapi.service.Terminal and implements at least all the
abstract interface methods. These terminals are typically located in the Java pack-
age namespace org.simalliance.openmobileapi.service.terminals.* (though
this is no requirement).

3.4.2 Integration as Add-On Terminal

Terminal interface modules can also be added at runtime by installing Android
application packages. SEEK automatically detects and adds such terminals. In or-
der to be discoverable by SEEK, the application package name must start with
“org.simalliance.openmobileapi.service.terminals.” The application pack-
age must contain at least one class that ends with the string “Terminal”. A terminal
class need not be located in any specific Java package namespace. However, all classes
ending with the string “Terminal” must implement all terminal interface methods.
As these interface methods are invoked through reflection, the terminal classes need
not inherit from any specific Java interface or class as long as they implement the
required interface methods.

3.4.3 Interface Methods

Terminal interface classes have to implement several methods that are used by the
smartcard service to interact with the terminal module. These methods match the
interface defined by the abstract base class Terminal.

18 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

• public *Terminal(android.content.Context context):
A constructor that takes an Android context as parameter.

• public String getName():
This method must return an identifying name for the terminal module, e.g.
“UICC”.

• public boolean isCardPresent():
This method must return true if the secure element of this terminal module
is available and can be connected to.

• public void internalConnect():
This method is called before any connections to the secure element are es-
tablished and can be used to initialize (e.g. power-up) the connection to the
secure element.

• public void internalDisconnect():
This method is called when the secure element is no longer used (e.g. because
all clients disconnected) and can be used for clean-up and to shutdown (e.g.
power-down) the connection to the secure element.

• public byte[] getAtr():
This method must return the answer-to-reset of the secure element (or null if
there is none or the ATR cannot be obtained for this type of SE). This method
may be invoked before internalConnect() or after internalDisconnect().

• public int internalOpenLogicalChannel():
This method is called to open a new logical channel. It must return the ISO/
IEC 7816-4 logical channel number of the opened channel. If opening a logical
channel without an explicit application identifier (AID) is not supported, this
method must throw an UnsupportedOperationException. If there is no fur-
ther logical channel available, a MissingResourceException must be thrown.

• public int internalOpenLogicalChannel(byte[] aid):
This method is called to open a new logical channel selecting a specific appli-
cation by its AID. It must return the ISO/IEC 7816-4 logical channel number
of the opened channel. If the application is not found, this method must throw
a NoSuchElementException. If there is no further logical channel available, a
MissingResourceException must be thrown.

• public byte[] getSelectResponse():
This method must return the response to the SELECT command that was
used to open the basic channel or a logical channel (or null if a SELECT
response cannot be retrieved).

• public byte[] internalTransmit(byte[] command):
This method is used to transmit a command APDU and to receive the corre-
sponding response APDU on any channel using the ISO/IEC 7816-4 channel
number as set in the CLA byte of the command APDU.

OPENMOBILE API |19

• public void internalCloseLogicalChannel(int channel):
This method is used to close a previously opened logical channel based on its
ISO/IEC 7816-4 logical channel number.

3.5 Secure Element Provider Interface since Version 4.0.0

Starting with version 4.0.0, SEEK-for-Android uses a different concept to manage
terminals. Terminals are no longer compiled into the smartcard system service. In-
stead, each terminal module is a separate Android service. The smartcard system
service enumerates, manages and binds those services dynamically at run-time.
Typically, each terminal is encapsulated into a separate Android application pack-
age. This permits a minimization of the privileges required by the smartcard system
service and by each terminal module. For instance, the smartcard system service
no longer needs permissions to access the UICC, an eSE, or an ASSD, as this was
the case with compiled-in terminals. Instead, there can be one terminal module ap-
plication with only the permission to access the UICC, another one with only the
permission to access the eSE, and another one with only the permission to access
the ASSD.

3.5.1 Service Interface

A terminal module consists of an (exported) Android service component that fil-
ters for the intent org.simalliance.openmobileapi.TERMINAL_DISCOVERY. More-
over, binding to the service must require the system permission org.simalliance.
openmobileapi.BIND_TERMINAL. This prevents other applications from bypassing
the access control mechanisms of the smartcard system service by directly binding
to the terminal module service components.
The following is an example of how such a terminal module service could be declared
in an Android application manifest (AndroidManifest.xml):
<service android:name=".MyTerminal"

android:label="MYTERMINAL"
android:enabled="true"
android:exported="true"
android:permission=

"org.simalliance.openmobileapi.BIND_TERMINAL">
<intent-filter>

<action android:name=
"org.simalliance.openmobileapi.TERMINAL_DISCOVERY" />

</intent-filter>
</service>

The terminal module service must implement the ITerminalService binder inter-
face:

20 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

interface ITerminalService {
OpenLogicalChannelResponse internalOpenLogicalChannel(

in byte[] aid,
in byte p2,
out SmartcardError error);

void internalCloseLogicalChannel(int channelNumber ,
out SmartcardError error);

byte[] internalTransmit(in byte[] command,
out SmartcardError error);

byte[] getAtr();
boolean isCardPresent();
byte[] simIOExchange(in int fileID,

in String filePath ,
in byte[] cmd,
out SmartcardError error);

String getSeStateChangedAction();
}

This interface consists of the following methods:

• isCardPresent:
This method must return true if the secure element of this terminal module
is available and can be connected to.

• getAtr:
This method must return the answer-to-reset of the secure element (or null
if there is none or the ATR cannot be obtained for this type of SE).

• internalOpenLogicalChannel:
This method is called to open a new logical channel selecting a specific applica-
tion by its AID. It must return an OpenLogicalChannelResponse object that
contains the ISO/IEC 7816-4 logical channel number of the opened channel
and the response to the SELECT command that was used to open the logi-
cal channel. Errors are reported by setting the reason in the SmartcardError
object that is passed through the parameter error.

• internalTransmit:
This method is used to transmit a command APDU and to receive the corre-
sponding response APDU on any channel using the ISO/IEC 7816-4 channel
number as set in the CLA byte of the command APDU. Errors are reported
by setting the reason in the SmartcardError object that is passed through
the parameter error.

• internalCloseLogicalChannel:
This method is used to close a previously opened logical channel based on its
ISO/IEC 7816-4 logical channel number. Errors are reported by setting the

OPENMOBILE API |21

reason in the SmartcardError object that is passed through the parameter
error.

• simIOExchange:
This method is used to select and read files of the SIM/UICC file system and
may be used by the access control enforcer. Errors are reported by setting the
reason in the SmartcardError object that is passed through the parameter
error.

• getSeStateChangedAction:
This method must return the name of an Android broadcast intent action
that is sent whenever the state of the secure element of this terminal module
changes.

3.5.2 Differentiation between System and Add-on Terminals

While this version of the SEEK smartcard API no longer differentiates between
compiled-in and add-on terminals, it differentiates between system terminals and
other terminals. System terminals are terminals with a name of the form “SIMx”,
“eSEx”, and “SDx” (where x is a consecutively numbered index that starts at 1
for each terminal type). These terminals are listed first when obtaining a list of
available terminals through the Open Mobile API. In order to prevent non-system
applications from adding terminals to the top of the list, applications exporting
system terminals are required to hold the system permission org.simalliance.
openmobileapi.SYSTEM_TERMINAL. As a result, applications using the Open Mobile
API can estimate if they talk to a system-provided or an add-on terminal.

3.6 Availability in Devices

As of today, many smartphones ship with an implementation of the Open Mobile
API in their stock ROMs. Typically, these implementations give access to a UICC-
based secure element. On some devices, they also provide access to an embedded
secure element (e.g. on the Samsung Galaxy S3) or a smartSD card. When com-
pared to SEEK, the vendor-specific implementations usually differ slightly in their
behavior—even though all implementations that we discovered seem to be originally
forked from SEEK (versions 3.1.0 or earlier).

For instance, we found differences in the access control mechanism. The SEEK im-
plementation follows GlobalPlatform’s Secure Element Access Control specification
while some vendor-specific implementations only support (or prefer) an access rule
file in a PKCS #15 file structure (cf. [8, 13]). Moreover, we found that some devices

22 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

Table 1: Open Mobile API support in existing devices

Manufacturer Model Android API sup- Compiled-in terminalsa Add-on
version ported UICC eSE ASSD terminals

Fairphone FP1 4.2.2 no − − − −
HTC One X 4.2.2 no − − − −
HTC One mini 2 4.4.2 yes yes n/ab n/ab yes
HTC One (M8) 5.0.2 yes yes yesc yesc yes
Huawei Ascend P7 4.4.2 yes yes yes yes yes
Huawei P8 lite 4.4.2 yes yes n/ab n/ab yes
LG Nexus 4 5.1.1 no − − − −
LG Nexus 5 5.1.1 no − − − −
LG Optimus

L5 II
4.1.2 yes yes n/ab n/ab n/ab

Motorola RAZR i 4.4.2 yes yes yes yes yes
Motorola Nexus 6 5.1.0 yes yes no no yes
Motorola Nexus 6 6.0.0 no − − − −
OnePlus One 5.0.2 no − − − −
Oppo N5117 4.3 yes yes yesc no yes
Samsung Galaxy S3 4.1.2 yes yes yes no yesd

Samsung Galaxy S4 5.0.1 yes yes yes no no
Samsung Galaxy S4

mini
4.4.2 yes yes n/ab n/ab no

Samsung Galaxy S5 4.4.2 yes yes yes no no
Samsung Galaxy S6 5.1.1 yes yes yes no no
Samsung Xcover 3 4.4.4 yes yes noe no no
Sony Xperia M2

Aqua
4.4.4 yes yes n/ab n/ab n/ab

Sony Xperia Z3
Compact

5.0.2 yes yes yes yes no

aImplementations of these terminals are provided as part of the smartcard service application
package. Access to these terminals through the Open Mobile API has not been tested.
bThis aspect has not been analyzed/tested.
cThese terminals are provided through a separate instance of the smartcard service with the pack-
age name com.nxp.nfceeapi.service. Access to these terminals has not been tested.
dIn addition to the add-on terminal interface defined by SEEK, add-on terminals must also im-
plement the methods public boolean isChannelCanBeEstablished() (used to check if further
logical channels to the secure element can be opened) and public void setCallingPackageInfo
(String packageName, int uid, int pid) (used to inform the add-on terminal about the call-
ing application (package name, user ID, and process ID) before opening channels and exchanging
APDUs).
eAn empty stub implementation is provided as part of the smartcard service application package.

OPENMOBILE API |23

do not support add-on terminals5.

Table 1 gives an overview of analyzed devices and their support for the Open Mobile
API. Due to the standardized API definition of the Open Mobile API, apps compiled
against the SEEK smartcard API framework seamlessly integrate with these vendor-
specific implementations shipped in stock ROMs.

5Possibly due to the security implications of add-on terminals in SEEK versions 3.1.0 and earlier
(cf. CVE-2015-6606).

REVERSE-ENGINEERINGANDROID APPLICATIONS |25

4. Reverse-Engineering Android Applications

We assembled a toolbox consisting of a number of existing applications for analyzing,
decompiling, and manipulating Android application packages and libraries. We used
this toolbox to evaluate the differences between the implementations of the Open
Mobile API on various Android devices, and, specifically, to reverse-engineer and
analyze how the Open Mobile API implementation on the Samsung Galaxy S3
accesses the UICC.

4.1 Tools

Our toolbox consists of the following freely available applications:

• The adb command (Android Debug Bridge) from the Android SDK platform
tools is used to pull the Android framework, application packages and libraries
from the system partition of existing Android devices.

• Apktool6 is used to assemble the framework files from the pulled files and to
extract resources (including the AndroidManifest.xml file) from (optimized)
Android application packages.

• A combination of smali and baksmali7 is used to transform optimized Dalvik
executables (.odex files) into non-optimized Dalvik executables (.dex files).
In other words, .odex files containing the optimized executable program code
stripped off Android application packages when shipping them on the system
partition of an Android device are translated into Dalvik bytecode packed into
a classes.dex file as it is usually embedded into stand-alone Android appli-
cation packages. Moreover, baksmali is used to disassemble Dalvik bytecode.

• The tool oat2dex8 is used to extract (and possibly de-optimize) Dalvik exe-
cutables from ahead-of-time compiled executables (.oat files) for the Android
runtime (ART).

• The tool dex2jar9 is used to translate Dalvik bytecode from Dalvik executables
(.dex files) and Android application packages (.apk files) into Java bytecode.

• The Java decompiler JD-GUI 10 is used to decompile Java bytecode into Java
source code.

6http://ibotpeaches.github.io/Apktool/
7https://github.com/JesusFreke/smali
8https://github.com/testwhat/SmaliEx
9https://github.com/pxb1988/dex2jar

10http://jd.benow.ca/

http://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
https://github.com/testwhat/SmaliEx
https://github.com/pxb1988/dex2jar
http://jd.benow.ca/

26 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

4.2 Using the Tools

In this section, we demonstrate how we used these tools to extract, decompile, and
analyze the Android system files (framework and system applications) of a Samsung
Galaxy S3 running its stock firmware based on Android 4.1.2.

4.2.1 Downloading Files from the Device

As a first step, we pulled the framework files and the Android application packages
from the system partition of the Samsung Galaxy S3 using the Android Debug
Bridge tool (adb). In order to allow access through the adb tool, we activated the
developer options and enabled the Android Debug Bridge interface (Settings →
Developer options → Android debugging) on the device.

The following commands were used to pull all the framework files:

$ adb pull /system/framework ./gs3/framework
$ adb pull /system/app/minimode -res.apk ./gs3/framework

Based on our experience with other devices, the actual location of the framework
files (specifically of files outside /system/framework containing resources required
to de-optimize DEX files) seems to vary.

For our analysis, the most interesting framework files were:

• framework-res.apk, twframework-res.apk, and minimode-res.apk: These
files contain the resources necessary to de-optimize .odex files.

• framework.odex: This file contains the implementation of the Android API
framework.

• framework2.odex: This file contains extensions to the Android API frame-
work.

• org.simalliance.openmobileapi.odex: This file contains the implementa-
tion of the Open Mobile API framework.

• com.android.nfc_extras.odex: This file contains the implementation of the
API framework for access to an embedded secure element.

The following command was used to pull all the Android applications integrated
into the system partition:

$ adb pull /system/app ./gs3/app

As with the framework files, the actual location may vary between different devices.
Specifically, starting with Android 4.4, an additional directory /system/priv-app

REVERSE-ENGINEERINGANDROID APPLICATIONS |27

contains privileged system applications that can obtain “signatureOrSystem” per-
missions without being signed with the platform key. Moreover, the structure of
these directories has significantly changed starting with Android 5.0.

For our analysis, the most interesting Android application files were:

• SmartcardService.apk and SmartcardService.odex: These files contain the
smartcard system service implementation.

• SecPhone.apk and SecPhone.odex: These files contain the telephony system
service implementation.

• Nfc.apk and Nfc.odex: These files contain the NFC system service implemen-
tation.

4.2.2 Preparing the Framework Files

Certain framework resource files are necessary to de-optimize and decode Android
application packages and optimized framework files. Their names typically end in
“-res.apk”. Apktool is used to collect and prepare those files:

$ java -jar ./bin/apktool.jar if -p ./fw \
./gs3/framework/framework -res.apk

$ java -jar ./bin/apktool.jar if -p ./fw \
./gs3/framework/minimode -res.apk

$ java -jar ./bin/apktool.jar if -p ./fw \
./gs3/framework/twframework -res.apk

4.2.3 De-optimizing Dalvik Executables

After collecting the framework resources, we can de-optimize optimized (“odex-ed”)
Dalvik executables of both, framework files and apps. The tool baksmali is used to
de-optimize and disassemble the executable code into source files based on the smali
assembly language syntax:

$ java -jar ./bin/baksmali.jar -a16 -d ./fw \
-o ./gs3/decoded/SmartcardService.deodexed \
-x ./gs3/app/SmartcardService.odex

The above command outputs the source files into the directory ./gs3/decoded/
SmartcardService.deodexed. We can then use the tool smali to assemble those
source files into Dalvik bytecode (Dalvik executable). The following command gen-
erates the Dalvik executable SmartcardService.dex:

$ java -jar ./bin/smali.jar -a16 \

28 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

-o ./gs3/decoded/SmartcardService.dex \
./gs3/decoded/SmartcardService.deodexed

4.2.4 Unpacking Application Packages

Android application packages can be extracted using Apktool. For optimized APKs,
the collected framework resources are used for de-optimization. We use the following
command:

$ java -jar ./bin/apktool.jar d -p ./fw \
-o ./gs3/decoded/SmartcardService.source \
./gs3/app/SmartcardService.apk

The above command outputs all resource files (AndroidManifest.xml, string re-
sources, etc.) in their source form (and for non-optimized application packages also
the Dalvik executable classes.dex) into the directory ./gs3/decoded/Smartcard-
Service.source.

4.2.5 Converting Dalvik Bytecode to Java Bytecode

As an intermediate step to decompiling Dalvik executables into Java source code,
we translate Dalvik bytecode into Java bytecode using the tool dex2jar. This tool
can either be used on a Dalvik executable (.dex file) or directly on an Android
application package (.apk file):

$ d2j-dex2jar -o ./gs3/decoded/SmartcardService.jar \
./gs3/decoded/SmartcardService.dex

4.2.6 Decompiling Java Bytecode

Finally, the Java bytecode can be decompiled using a standard Java decompiler. We
used JD-GUI to decompile the bytecode into its source form:

$ java -jar ./bin/jd-gui.jar \
./gs3/decoded/SmartcardService.jar

Figure 10 shows exemplary results of the decompiler.

4.3 Interpreting Decompiled Code: Results

Our reverse-engineering toolchain has some limitations when it comes to generating
Java source code. Many parts of the Dalvik program code can be translated into

REVERSE-ENGINEERINGANDROID APPLICATIONS |29

Figure 10: JD-GUI

working (or at least easily readable) Java source code. However, sometimes, specifi-
cally when it comes to certain code constructs, translation from Dalvik bytecode to
Java source code produces code that is difficult to read or even completely erroneous.

For example, the following method, that converts a byte array into a string of hex-
adecimal digits, is translated into working Java source code:

1 public static String bytesToHexString(byte[] paramArrayOfByte) {
2 if (paramArrayOfByte == null) {
3 return null;
4 }
5 StringBuilder localStringBuilder =
6 new StringBuilder(paramArrayOfByte.length * 2);
7 int i = 0;
8 while (i < paramArrayOfByte.length) {
9 localStringBuilder.append("0123456789abcdef"

10 .charAt(paramArrayOfByte[i] >> 4 & 0xF));
11 localStringBuilder.append("0123456789abcdef"
12 .charAt(paramArrayOfByte[i] & 0xF));
13 i += 1;
14 }

30 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

15 return localStringBuilder.toString();
16 }

Only the names of parameters and local variables, still present in the disassembled
Dalvik bytecode (see appendix A.1), get lost during the translation into Java code.
Consequently, conditional statements and simple loops do not pose a problem to the
decompilation toolchain.

In some cases, however, the Java decompiler produces readable code with minor
issues that would prevent the generated source code from compiling (cf. appendix A.2
for the disassembled Dalvik bytecode):

1 public int openIccLogicalChannel(String paramString) {
2 if (DBG_ENG) {
3 Log.d("PhoneInterfaceManager",
4 ">␣openIccLogicalChannel␣" + paramString);
5 }
6 paramString = (Integer)sendRequest(14,
7 new IccOpenChannel(paramString));
8 if (DBG_ENG) {
9 Log.d("PhoneInterfaceManager",

10 "<␣openIccLogicalChannel␣" + paramString);
11 }
12 return paramString.intValue();
13 }

In the above code, paramString, defined as String, is treated as an Integer object
starting on line 6.

Unfortunately, certain code constructs in Dalvik executables result in completely
unreadable and even wrong Java source code. For instance, this seems to be the
case with switch statements like in the following example:

1 public IccException getException() {
2 if (success()) {
3 return null;
4 }
5 switch (this.sw1) {
6 default:
7 return new IccException("sw1:" + this.sw1 +
8 "␣sw2:" + this.sw2);
9 }

10 if (this.sw2 == 8) {
11 return new IccFileTypeMismatch();
12 }
13 return new IccFileNotFound();
14 }

The generated Java code only has a default label for the switch statement. Hence,

REVERSE-ENGINEERINGANDROID APPLICATIONS |31

new IccException(...) (see line 8) would be returned regardless of the value of
sw1. Lines 10–13 are unreachable.

However, a glance at the disassembled Dalvik bytecode (see appendix A.3) reveals
that a packed-switch statement was incorrectly transformed. The packed-switch
statement looks like this:

1 iget v0, p0, Lcom/android/internal/telephony/IccIoResult;->sw1:I
2 packed-switch v0, :pswitch_data_48
3
4 new-instance v0, Lcom/android/internal/telephony/IccException;

(...)
6 goto :goto_7
7
8 :pswitch_35

(...)
10 goto :goto_7

(...)
12 :pswitch_data_48
13 .packed-switch 0x94
14 :pswitch_35
15 .end packed-switch

Therefore, only the default branch (lines 4–6 in the above listing) of the packed-
switch statement was properly translated into Java code. The case 0x94 statement
(see the switching table on lines 13–15) was not translated into Java code. Conse-
quently, the code starting at the label :pswitch_35 (which maps to lines 10–13 of
the generated Java source code) is seemingly unreachable.

Hence, the correct Java source code corresponding to the Dalvik bytecode would be:
1 public IccException getException() {
2 if (success()) {
3 return null;
4 }
5 switch (this.sw1) {
6 case 0x94:
7 if (this.sw2 == 8) {
8 return new IccFileTypeMismatch();
9 }

10 return new IccFileNotFound();
11
12 default:
13 return new IccException("sw1:" + this.sw1 +
14 "␣sw2:" + this.sw2);
15 }
16 }

SEEKON THEGALAXY S3 |33

5. SEEK on the Galaxy S3

Using our reverse-engineering toolbox, we disassembled and decompiled the Open
Mobile API framework, the smartcard service, and all components that the smart-
card service uses to access secure elements on our Samsung Galaxy S3.

5.1 OpenMobile API Framework

The Open Mobile API framework is located in /system/framework/org.sim-
alliance.openmobileapi.odex. It follows the Open Mobile API specification and
connects to the smartcard system service in order to access secure elements.

5.2 Smartcard System Service

The smartcard system service (org.simalliance.openmobileapi.service) is lo-
cated in the application package /system/app/SmartcardService.*. This applica-
tion contains two interesting classes for access to secure elements:

1. org.simalliance.openmobileapi.service.terminals.SmartMxTerminal,
for access to an embedded secure element through a Samsung-specific variation
of the Android API for embedded secure elements, and

2. org.simalliance.openmobileapi.service.terminals.UiccTerminal, for
access to a UICC-based secure element through the telephony system service.

5.3 UICC Terminal Interface

As we were specifically interested in accessing the UICC, we further analyzed the
UICC terminal interface class. When this class is instantiated, it obtains a han-
dle (Android binder interface com.android.internal.telephony.ITelephony) to
access the telephony service:

manager = ITelephony.Stub.asInterface(
ServiceManager.getService("phone"));

The implementation of the UiccTerminal class then accesses various methods of
the ITelephony interface:

• The method getAtr() is used to obtain the ATR of the UICC-based secure
element:

byte[] atr = manager.getAtr();

34 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

• The method openIccLogicalChannel() is used to open a new logical channel
selecting a specific smartcard application (based on its AID, encoded as a
hexadecimal string):

int channelId = manager.openIccLogicalChannel(aidStr);

• The method getSelectResponse() is used to obtain the response to the SE-
LECT APDU command used to select the smartcard application on a previ-
ously opened logical channel:

byte[] selectResponse = manager.getSelectResponse();

• The method closeIccLogicalChannel() is used to close a previously opened
logical channel:

boolean success = manager.closeIccLogicalChannel(
channelId[channel]);

• The method getLastError() is used to obtain an error code in case opening
a logical channel failed:

int result = manager.getLastError();

• The method transmitIccLogicalChannel() is used to exchange APDUs over
any logical channel (including the basic channel):

String response = manager.transmitIccLogicalChannel(
cla & 0x0FC ,
ins,
channelId[cla & 0x003],
p1, p2,
len, dataStr));

The logical channel information is removed from the class byte (CLA) of the
APDU. Instead, the channel identifier obtained by openIccLogicalChannel()
is passed to this method. A channel identifier of 0 is used for the basic channel.
Due to the way how channel identifiers are mapped to channel numbers, only
up to four logical channels are supported (cf. [10], which would allow up to 20
logical channels).

The values of len and data depend on the type of the APDU (cf. [10]):

1. Case 1 (only command header): len is set to −1 and dataStr is set to
null.

2. Case 2 (response data, no command data): len is set to the value of
the Le field and dataStr is set to null. Only a single-byte Le field is
properly mapped to len. In case of a multi-byte Le field, the remaining
bytes would be treated as dataStr.

SEEKON THEGALAXY S3 |35

3. Case 3 (command data, no response data): len is set to the value of
the Lc field and dataStr contains the command DATA field (encoded
as hexadecimal string). Only a single-byte Lc field is properly mapped
to len. In case of a multi-byte Lc field, the remaining bytes would be
treated as part of dataStr.

4. Case 4 (command data, response data): len is set to the value of the Lc
field and dataStr contains the command DATA field and the Le field
(encoded as hexadecimal string). As with case 3, all but the first byte of
a multi-byte Lc field would be treated as part of dataStr.

Besides those methods, the system property “gsm.sim.state” is used to determine if
a UICC is inserted into the device and ready to be accessed:
public boolean isCardPresent() throws CardException {

return "READY".equals(SystemProperties.get(
"gsm.sim.state"));

}

5.4 Telephony System Service

The Binder interface ITelephony is used to establish an IPC connection to the
telephony system service. This system service (com.android.phone) is encapsulated
in the application package /system/app/SecPhone.*.

The ITelephony interface is implemented by the class com.android.phone.Phone-
InterfaceManager (see appendix B.1 for the implementation and Fig. 11 for the
class diagram). All interface methods used by the UICC terminal module invoke the

UiccTerminal

«interface»[Phone

invokeOemRilRequestRawIdata[:[byte[]j[response[:[Message+
[...]

Handler

PhoneInterfaceManager

MainThreadHandler

#handleMessageIMessage+

AmMainThreadHandler[:[MainThreadHandler
AmPhone[:[Phone

psendRequestIcmd[:[intj[arg[:[Object+[:[Object
#getAtrI+[:[byte[]
#openIccLogicalChannelIaid[:[String+[:[int
#closeIccLogicalChannelIchannel[:[int+[:[boolean
#transmitIccLogicalChannelILLL+[:[String
#getSelectResponseI+[:[byte[]
#getLastErrorI+[:[int

«interface»[ITelephony

getAtrI+[:[byte[]
openIccLogicalChannelIaid[:[String+[:[int
closeIccLogicalChannelIchannel[:[int+[:[boolean
transmitIccLogicalChannelILLL+[:[String
getSelectResponseI+[:[byte[]
getLastErrorI+[:[int
[...]

«uses»

Figure 11: Class diagram for the relevant classes of SEEK and the telephony system
service

36 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

sendRequest() method passing a command code and a command parameter. This
method, in turn, posts a request (based on the command and its parameters) into
a message queue and waits for the request to be processed. The message queue is
processed by an instance of the class MainThreadHandler implemented inside the
PhoneInterfaceManager. The message handler converts each request into a byte
array that is passed to the radio interface (RIL system daemon) using the method
invokeOemRilRequestRaw() (RIL command RIL_REQUEST_OEM_HOOK_RAW [= 59]).
Similarly, the message handler processes raw responses posted by the radio interface
into response values expected by the high-level interface methods.

5.4.1 RIL_REQUEST_OEM_HOOK_RAW

All commands related to access to the UICC are exchanged by means of the RIL
command RIL_REQUEST_OEM_HOOK_RAW. Commands seem to follow a common frame
structure:
Command Length Parameters

(2 bytes) (2 bytes) (optional, n bytes)

0x15 0x0X 4 + n · · ·

Where command is a 2-byte field of the form 0x150X denoting the proprietary
(“raw”) radio interface command, length is a 2-byte field denoting the overall length
of the command frame (including the command and length fields), and parameters
contains zero or more command arguments. Multi-byte integer values are transmit-
ted in big-endian format.
Responses are either encoded as byte arrays with command-specific formats or as
RIL error codes. The following error codes have values deviating from those defined
by SEEK-for-Android and AOSP:

• INVALID_PARAMETER uses the value 27,
• MISSING_RESOURCE uses the value 29, and
• NO_SUCH_ELEMENT uses the value 30.

When we later reimplemented UICC access for the Galaxy S3 on top of Cyano-
genMod, we found that the above error code mapping (obtained by reverse-engi-
neering Samsung’s implementation of the framework class com.android.internal.
telephony.RILConstants) is wrong. Instead, the error code 29 is returned in cases
where SEEK expects a NO_SUCH_ELEMENT error and the error code 30 is returned
in cases where SEEK expects a MISSING_RESOURCE error. Consequently, the correct
numbering of the RIL error codes is

• INVALID_PARAMETER = 27,
• MISSING_RESOURCE = 30, and
• NO_SUCH_ELEMENT = 29.

SEEKON THEGALAXY S3 |37

5.4.2 Getting the Answer-to-Reset

The command code used to obtain the answer-to-reset (ATR) of the UICC is 0x150D.
The implementation is listed in appendix B.1 on lines 418–461. The following com-
mand frame is passed to invokeOemRilRequestRaw():
Command Length

(2 bytes) (2 bytes)

0x15 0x0D 0x00 0x04

Upon success, this command returns the length of the ATR (1 byte), followed by
one byte with unknown function that is ignored by the Samsung implementation,
followed by the bytes of the ATR:
ATR Len. Unknown ATR

(1 byte) (1 byte) (n bytes)

n 0xXY · · ·

5.4.3 Opening a Logical Channel

The command code used to open a new logical channel is 0x1509. The implemen-
tation is listed in appendix B.1 on lines 265–355. The command takes the ap-
plication identifier (AID) of a smartcard application—that should be selected on
the new logical channel—as parameter. The following command frame is passed to
invokeOemRilRequestRaw():
Command Length AID

(2 bytes) (2 bytes) (n bytes)

0x15 0x09 4 + n · · ·

Upon success, this command returns the length of the logical channel ID (1 byte),
followed by the logical channel ID, followed by the length of the response to the
SELECT (by AID) command, followed by the actual response to the SELECT (by
AID) command:

ID Len. Channel ID Resp. Len. SELECT Response
(1 byte) (n bytes) (1 byte) (m bytes)

n · · · m · · ·

In case of an error, one of the error codes MISSING_RESOURCE (indicating that all
available logical channels are in use) or NO_SUCH_ELEMENT (indicating that the ap-
plication AID could not be selected) is returned.

5.4.4 Closing a Logical Channel

The command code used to close a previously opened logical channel is 0x150A. The
implementation is listed in appendix B.1 on lines 357–416. The command takes the

38 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

channel ID (cf. response to opening a logical channel) as parameter. The following
command frame is passed to invokeOemRilRequestRaw():

Command Length Channel ID
(2 bytes) (2 bytes) (4 bytes)

0x15 0x0A 0x00 0x08 · · ·

The response does not contain any data. In case channel ID does not reference a
previously opened logical channel, the error code INVALID_PARAMETER is returned.

5.4.5 Exchanging an APDU Command on the Basic Channel

The command code used to exchange an APDU command on the basic channel (i.e.
logical channel 0) is 0x1508. The implementation is listed in appendix B.1 on lines
158–263. The command takes the header and the optional body field of the command
APDU as parameters. The body field consists of a length byte (P3) and the data
field. P3 matches the len parameter of the transmitIccLogicalChannel() method
and, therefore, maps to the Le byte (cf. [10]) if there is no command data field or
the Lc byte if the command data field is not empty. We did not test if it is possible
to wrap extended length APDUs or case 4 APDUs (cf. APDU cases in section 5.3)
with this command by putting the remaining bytes of the length fields in the data
part. This is what would happen if such an APDU is passed in though the SEEK
smartcard service. It could also be the case that a mapping procedure similar to
that defined in [9] for the T=0 transmission protocol needs to be implemented. This
is currently not the case with SEEK.

The following command frame is passed to invokeOemRilRequestRaw():

Command Length APDU Header APDU Data
(2 bytes) (2 bytes) (4 bytes) (optional, 1 + n bytes)

0x15 0x08 8 or 9 + n CLA INS P1 P2 P3 · · ·

Upon success, this command returns the corresponding response APDU (cf. [10]):

Response Data Status
(n bytes) (2 bytes)

· · · SW1 SW2

In case a malformed command APDU is passed as parameter, the error code IN-
VALID_PARAMETER is returned.

5.4.6 Exchanging an APDU Command on a Logical Channel

Two different command codes are used to exchange an APDU command on a logical
channel (other than channel 0): 0x150B and 0x150C. The implementation is listed
in appendix B.1 on lines 158–263.

SEEKON THEGALAXY S3 |39

The first version of this command (command code 0x150B) is used when there is
at least a length field (Lc or Le) included into the command APDU. In this case,
the command takes the APDU header, the length byte (P3, cf. section 5.4.5), the
channel ID (cf. response to opening a logical channel), and the optional APDU data
field as parameters. Again, we did not test if it is possible to wrap extended length
APDUs or case 4 APDUs with this command. The following command frame is
passed to invokeOemRilRequestRaw():

Command Length APDU Header P3 Channel ID APDU Data
(2 bytes) (2 bytes) (4 bytes) (1 B) (4 bytes) (optional, n bytes)

0x15 0x0B 13 + n CLA INS P1 P2 P3 · · · · · ·

The second version of this command (command code 0x150C) is used for case 1
APDUs (i.e. APDUs that have no command data field and expect no response data,
cf. [10]). In this case, the command takes the APDU header and the channel ID (cf.
response to opening a logical channel) as parameters. The following command frame
is passed to invokeOemRilRequestRaw():

Command Length APDU Header Channel ID
(2 bytes) (2 bytes) (4 bytes) (4 bytes)

0x15 0x0C 0x00 0x0C CLA INS P1 P2 · · ·

Upon success, these commands return the corresponding response APDU (cf. [10]):

Response Data Status
(n bytes) (2 bytes)

· · · SW1 SW2

In case a malformed command APDU or an invalid channel ID are passed as pa-
rameters, the error code INVALID_PARAMETER is returned.

ADDINGUICC TERMINAL SUPPORT TO CYANOGENMOD|41

6. Adding UICC Terminal Support to CyanogenMod

Our analysis of the Samsung Galaxy S3 revealed that we need to modify the RIL
implementation of the telephony system service in order to permit access to the
UICC by sending proprietary command blobs to the RIL system daemon.

6.1 CyanogenMod 11.0 for the Samsung Galaxy S3

As a first step towards integrating SEEK into CyanogenMod, the CyanogenMod
sources for the Samsung Galaxy S3 (i9300) need to be obtained. We chose version
11.0 as this is the most recent version available for that device.

First, a new directory for checking out CyanogenMod has to be created:

$ mkdir cm -11.0
$ cd cm -11.0
$ repo init \

-u https://github.com/CyanogenMod/android.git \
-b stable/cm -11.0

To obtain the configuration of the source tree that was used to generate a spe-
cific CyanogenMod build (e.g. cm-11-20151004-NIGHTLY-i9300), the build mani-
fest from the respective over-the-air update .zip file needs to be extracted and used
to initialize the local repository:

$ unzip -p ../cm-rel/cm-11-20151004-NIGHTLY -i9300.zip \
system/etc/build -manifest.xml >\
.repo/manifests/cm-11-20151004-NIGHTLY -i9300.xml

$ repo init -m cm-11-20151004-NIGHTLY -i9300.xml

Finally, the sources and pre-built files can be downloaded:

$ repo sync
$ cd vendor/cm
$./get-prebuilts
$ cd ../..

For building the complete Android system, some additional proprietary files need to
be extracted from an existing Galaxy S3 with that CyanogenMod version. Alterna-
tively, these files can also be extracted from the respective over-the-air update .zip
file (e.g. cm-11-20151004-NIGHTLY-i9300.zip).

42 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

6.2 Patches to Include SEEK-for-Android

In CyanogenMod version 10.2 and earlier, patches provided by the SEEK project
had to be applied to the CyanogenMod source tree. Since version 11.0, SEEK-for-
Android is integrated into the CyanogenMod source tree. Therefore, these patches
no longer need to be applied. However, the SEEK smartcard system service and the
API framework must be included into the build process for the Galaxy S3 (i9300).
This can be accomplished by adding the following lines to the file device/samsung/
i9300/i9300.mk:

PRODUCT_PACKAGES += \
org.simalliance.openmobileapi \
org.simalliance.openmobileapi.xml \
SmartcardService

PRODUCT_PROPERTY_OVERRIDES += \
persist.nfc.smartcard.config=SIM1

Moreover, the smartcard service project is excluded from the build-process by de-
fault. It can be included by adding the following line to the file device/samsung/
i9300/BoardConfig.mk:

TARGET_ENABLE_SMARTCARD_SERVICE := true

Further, the version of the smartcard system service included into CyanogenMod
is based on a non-standard implementation of the Android eSE API. This non-
standard eSE API is not available on the Galaxy S3. Consequently, the references
to that API need to be removed.

First, in the file packages/apps/SmartCardService/Android.mk, the entry com.
android.qcom.nfc_extras must be removed from the variable LOCAL_JAVA_LI-
BRARIES:

LOCAL_JAVA_LIBRARIES := core framework \
org.simalliance.openmobileapi

Second, the eSE terminal implementation has to be removed by deleting the file
SmartMxTerminal.java (in packages/apps/SmartCardService/src/org/simal-
liance/openmobileapi/service/terminals/). Finally, all references to the class
com.android.qcom.nfc_extras.NfcQcomAdapter need to be removed from the file
SmartcardService.java (in packages/apps/SmartCardService/src/org/sim-
alliance/openmobileapi/service/).

Moreover, the ASSD terminal in not necessary for our purpose and can also be
removed by deleting the file ASSDTerminal.java (in packages/apps/SmartCard-
Service/src/org/simalliance/openmobileapi/service/terminals/).

ADDINGUICC TERMINAL SUPPORT TO CYANOGENMOD|43

6.3 Enabling UICC Access through SEEK

This section describes the changes necessary to enable access to the UICC through
SEEK in CyanogenMod 11.0 on a Samsung Galaxy S3 (see Fig. 12 for an overview
of involved classes, methods, and fields). A complete patch set with all these changes
to the CyanogenMod 11.0 source tree is available on our website11.

6.3.1 Radio Interface Layer

As the changes necessary to enable access to the UICC seem to be specific to the
Exynos4 system-on-chip that is used in the Samsung Galaxy S3, the best place
to add these platform-specific additions would be the Exynos4 RIL implemen-
tation located in frameworks/opt/telephony/src/java/com/android/internal/
telephony/SamsungExynos4RIL.java. With this approach, the changes only apply
to real hardware that uses the Exynos4 RIL implementation while the same source
tree can be compiled for other target devices or the emulator using the existing
SEEK emulator extensions without being influenced by our modifications.

SEEK already adds a standard implementation for UICC access (usable with the
emulator) to the default RIL implementation. This standard implementation consists
of the following four methods that invoke RIL-specific commands:

• iccExchangeAPDU(int cla, int command, int channel, int p1, int p2,
int p3, String data, Message result) for exchanging APDU commands
with the UICC,

• iccOpenChannel(String aid, Message result) for opening a logical chan-
nel to an applet on the UICC,

• iccCloseChannel(int channel, Message result) for closing a previously
opened logical channel, and

• iccGetAtr(Message result) for retrieving the ATR of the UICC.

Consequently, the standard implementation of these methods has to be overridden
in the device-specific subclass SamsungExynos4RIL. As all of these commands are en-
capsulated in the RIL command RIL_REQUEST_OEM_HOOK_RAW, our implementation
defines constants to tag each of these individual commands. This permits mapping
responses to RIL_REQUEST_OEM_HOOK_RAW to a specific command while processing
the response message handler:
private static final int RIL_OEM_HOOK_RAW_EXCHANGE_APDU = 1;
private static final int RIL_OEM_HOOK_RAW_OPEN_CHANNEL = 2;
private static final int RIL_OEM_HOOK_RAW_CLOSE_CHANNEL = 3;
private static final int RIL_OEM_HOOK_RAW_GET_ATR = 4;
11https://usmile.at/sites/default/files/blog/uicc_on_seek_on_cm11_0_gs3.patch

https://usmile.at/sites/default/files/blog/uicc_on_seek_on_cm11_0_gs3.patch

44 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

Smartcard
System Service

SamsungExynoskRIL

lRIL_OEM_HOOK_RAW_EXCHANGE_APDU:«:int:«B:q
lRIL_OEM_HOOK_RAW_OPEN_CHANNEL:«:int:«B:w
lRIL_OEM_HOOK_RAW_CLOSE_CHANNEL:«:int:«B:h
lRIL_OEM_HOOK_RAW_GET_ATR:«:int:«B:k

=processSolicited#p:«:Parcelp:«:RILRequest
=responseRawCheckRequest#p:«:Parcele:result:«:Messagep:«:Object
ciccExchangeApdu#ddde:response:«:Messagep
ciccOpenChannel#ddde:response:«:Messagep
ciccCloseChannel#ddde:Messagep
ciccGetAtr#Message:responsep
[...]

RIL

=processSolicited#p:«:Parcelp:«:RILRequest
=responseRaw#p:«:Parcelp:«:Object
[...]

«interface»:CommandsInterface

iccExchangeApdu#ddde:response:«:Messagep
iccOpenChannel#ddde:response:«:Messagep
iccCloseChannel#ddde:Messagep
iccGetAtr#Message:responsep
[...]

PhoneBase

UiccTerminal

«interface»:Phone

Handler

PhoneInterfaceManager

MainThreadHandler

chandleMessage#Messagep

lmMainThreadHandler:«:MainThreadHandler
lmPhone:«:Phone
lmSelectResponse:«:byte[]
lmLastError:«:int

=sendRequest#cmd:«:inte:arg:«:Objectp:«:Object
cgetAtr#p:«:byte[]
copenIccLogicalChannel#aid:«:Stringp:«:int
ccloseIccLogicalChannel#channel:«:intp:«:boolean
ctransmitIccLogicalChannel#dddp:«:String
cgetSelectResponse#p:«:byte[]
cgetLastError#p:«:int

«interface»:ITelephony

getAtr#p:«:byte[]
openIccLogicalChannel#aid:«:Stringp:«:int
closeIccLogicalChannel#channel:«:intp:«:boolean
transmitIccLogicalChannel#dddp:«:String
getSelectResponse#p:«:byte[]
getLastError#p:«:int
[...]

«uses»

Telephony
System Service

Radio Interface Layer

Figure 12: Class diagram for the relevant classes of SEEK and the telephony system
service

ADDINGUICC TERMINAL SUPPORT TO CYANOGENMOD|45

Next, the above methods are overridden to assemble the command packets for RIL_
REQUEST_OEM_HOOK_RAW (cf. section 5.4), to add the command tag as parameter to
the result message object, and to send the commands through RIL_REQUEST_OEM_
HOOK_RAW. For instance, the following code shows parts of the implementation of
iccOpenChannel(...):

1. First, an output steam, used to generate a byte array that holds the command,
is created:
@Override
public void iccOpenChannel(String aid, Message result) {

ByteArrayOutputStream bos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(bos);

2. Second, the command code (0x1509 for opening a logical channel), the length
of the command, and the command parameters are written into the stream:

dos.writeByte(0x15);
dos.writeByte(0x09);
dos.writeShort(len);
(...)

3. A byte array representation of the custom command is generated from the
output stream:

byte[] rawRequest = bos.toByteArray();

4. The resulting message is tagged with our custom command code constant
(RIL_OEM_HOOK_RAW_OPEN_CHANNEL) by storing that value in the (otherwise
unused) field arg1 of the result message object:

result.arg1 = RIL_OEM_HOOK_RAW_OPEN_CHANNEL;

5. Finally, an instance of a RIL_REQUEST_OEM_HOOK_RAW RIL command is ob-
tained, the byte array representation of the custom command is added, and
the request is sent to the RIL system daemon:

RILRequest rr = RILRequest.obtain(
RIL_REQUEST_OEM_HOOK_RAW ,
result);

rr.mParcel.writeByteArray(rawRequest);
send(rr);

}

After implementing similar processing for the other SEEK-specific methods, it
is possible to perform logical channel management and to send smartcard com-
mands to the UICC. As a next step, the responses to these commands need
to be detected and decoded. All three commands are wrapped inside a generic
RIL_REQUEST_OEM_HOOK_RAW RIL request and are additionally tagged with their ac-
tual meaning. Therefore, the responses to this generic request must be intercepted,

46 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

evaluated with regard to their command tag, and decoded into the format expected
by SEEK.
Responses to RIL_REQUEST_OEM_HOOK_RAW are handled inside the method process-
Solicited(). By default, responses to this request are passed to the method re-
sponseRaw() which extracts the response data into a byte array. Therefore, our
implementation adds a new method responseRawCheckRequest() that performs
a conversion based on the actual command (as tagged in the result message) and
replaces the original response processing for RIL_REQUEST_OEM_HOOK_RAW:
@Override
protected RILRequest processSolicited (Parcel p) {

(...)
case RIL_REQUEST_RESET_RADIO:

ret = responseVoid(p);
break;

case RIL_REQUEST_OEM_HOOK_RAW:
ret = responseRawCheckRequest(p, rr.mResult);
break;

(...)

The method responseRawCheckRequest() checks the command tag in arg1 of the
result message object rr.mResult. Based on the command tag, it decodes the re-
sponse bytes into the format expected by the SEEK implementation:
protected Object responseRawCheckRequest(Parcel p,

Message result) {
Object ret = null;
switch(result.arg1) {

case RIL_OEM_HOOK_RAW_EXCHANGE_APDU: (...)
case RIL_OEM_HOOK_RAW_OPEN_CHANNEL: (...)
case RIL_OEM_HOOK_RAW_CLOSE_CHANNEL: ret = null; break;
case RIL_OEM_HOOK_RAW_GET_ATR: (...)
default: ret = responseRaw(p); break;

}
return ret;

}
For each of the commands, the response is obtained by creating a byte array from
the response parcel object p:
byte[] responseRaw = p.createByteArray();
For RIL_OEM_HOOK_RAW_EXCHANGE_APDU, that byte array is the response APDU it-
self. As SEEK expects an instance of the class IccIoResult as result, the byte array
needs to be cut into the data part and the two bytes of the status word to create a
new instance of IccIoResult:

ADDINGUICC TERMINAL SUPPORT TO CYANOGENMOD|47

byte[] data = new byte[responseRaw.length - 2];
System.arraycopy(responseRaw , 0, data , 0, data.length);
ret = new IccIoResult(

responseRaw[responseRaw.length - 2] & 0x0ff ,
responseRaw[responseRaw.length - 1] & 0x0ff ,
data);

For RIL_OEM_HOOK_RAW_OPEN_CHANNEL, the byte array contains the channel ID and
the SELECT response, each preceded by a length byte. SEEK expects an integer
array (int[]) where the first array entry contains the channel ID. Therefore, the
channel ID is converted into an integer value and stored as the first value of an
int[] array. In addition, the SELECT response is stored into that same array by
casting each byte of the SELECT response into an integer value. These additional
array elements are ignored by the default implementation of SEEK in CyanogenMod
11.0.
int idLen = responseRaw[0] & 0x0ff;
int channelId = 0;
for (int i = idLen; i >= 1; --i) {

channelId <<= 8;
channelId |= responseRaw[i] & 0x0ff;

}

int selectResLen = responseRaw[idLen + 1] & 0x0ff;
byte[] selectRes = new byte[selectResLen];
System.arraycopy(responseRaw , idLen + 2,

selectRes , 0, selectResLen);

int[] intArrayRet = new int[1 + selectRes.length];
intArrayRet[0] = channelId;
for (int i = 0; i < selectRes.length; ++i) {

intArrayRet[1 + i] = selectRes[i] & 0x0ff;
}
ret = intArrayRet;

For RIL_OEM_HOOK_RAW_GET_ATR, the byte array contains the ATR preceded by a
length byte and a second byte of unknown purpose. SEEK expects the ATR bytes
as a string of hexadecimal digits:
byte[] atr = new byte[responseRaw[0] & 0x0ff];
System.arraycopy(responseRaw , 2, atr, 0, atr.length);
ret = IccUtils.bytesToHexString(atr);

Finally, the error codes defined for the SEEK-specific RIL errors in CyanogenMod do
not match the error code values used by the Exynos4 RIL in the Samsung Galaxy S3.
Consequently, these device-specific error codes need to be translated to the values

48 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

expected by the CyanogenMod implementation. This translation is performed in the
method processSolicited(). If an error is received in response to RIL_REQUEST_
OEM_HOOK_RAW for one of the tagged commands, the error code values INVALID_
PARAMETER, NO_SUCH_ELEMENT, and MISSING_RESOURCE are converted:
if (error != 0) {

switch (rr.mRequest) {
(...)
case RIL_REQUEST_OEM_HOOK_RAW:

if (rr.mResult.arg1 != 0) {
switch (error) {

case 27: error = INVALID_PARAMETER; break;
case 29: error = NO_SUCH_ELEMENT; break;
case 30: error = MISSING_RESOURCE; break;
default: break;

}
}
break;

}
rr.onError(error , ret);
return rr;

}

INVALID_PARAMETER errors received in response to the standard RIL command RIL_
REQUEST_SIM_IO, which is also used by SEEK, are translated in a similar way:

case RIL_REQUEST_SIM_IO:
if (error == 27) {

error = INVALID_PARAMETER;
}
break;

6.3.2 Telephony System Service

While the default implementation of SEEK included in CyanogenMod 11.0 retrieves
the SELECT response by sending an additional GET RESPONSE APDU (using
the transmitIccLogicalChannel() method) immediately after opening a logical
channel for an applet, the Exynos4 RIL in the Galaxy S3 immediately returns the
SELECT response in the response to the command that opens a logical channel.
Therefore, this SELECT response needs to be stored by the telephony service and
an additional method is necessary to pass the stored value from the telephony system
service to the UICC terminal module.

This method can be integrated into the telephony service interface by adding the

ADDINGUICC TERMINAL SUPPORT TO CYANOGENMOD|49

following lines to the IPC interface definition file ITelephony.aidl (in frameworks/
base/telephony/java/com/android/internal/telephony/):
/**
* Get SELECT response from a previous call to
* openIccLogicalChannel(AID)
*/

byte[] getSelectResponse();
Then, this interface can be implemented by the main entry-point implementation
of the telephony system service, PhoneInterfaceManager (in packages/services/
Telephony/src/com/android/phone/PhoneInterfaceManager.java):
private byte[] mSelectResponse = null;
public byte[] getSelectResponse() {

return mSelectResponse;
}
Thus, the method getSelectResponse() returns the last SELECT response stored
in mSelectResponse.
The result of the openIccLogicalChannel() command is received as the message
EVENT_OPEN_CHANNEL_DONE within the MainThreadHandler in PhoneInterface-
Manager. This result contains the ID of the opened logical channel as well as the
SELECT response, both combined into one integer array. Therefore, the SELECT
response needs to be extracted from that integer array:
case EVENT_OPEN_CHANNEL_DONE:

(...)
int[] resultArray = (int[]) ar.result;
request.result = new Integer(resultArray[0]);
mSelectResponse = null;
if (resultArray.length > 1) {

mSelectResponse = new byte[resultArray.length - 1];
for (int i = 1; i < resultArray.length; ++i) {

mSelectResponse[i - 1] =
(byte)(resultArray[i] & 0x0ff);

}
}
mLastError = SUCCESS;
(...)

6.3.3 Smartcard System Service

Finally, the UICC terminal of the SEEK implementation needs to be adapted
to read the SELECT response by calling the method getSelectResponse() in-

50 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

stead of issuing an additional GET RESPONSE APDU exchange. This is done
inside the method internalOpenLogicalChannel() of the UiccTerminal class
of the smartcard system service (in packages/apps/SmartCardService/src/org/
simalliance/openmobileapi/service/terminals/UiccTerminal.java):
mSelectResponse = manager.getSelectResponse();

In order to remain compatible with other RIL implementations (e.g. emulator ex-
tensions) that do not return the SELECT response that way, the GET RESPONSE
APDU is still issued in case getSelectResponse() returns null:
if (mSelectResponse == null) {

byte[] getResponseCmd = new byte[] {
0x00, (byte) 0xC0, 0x00, 0x00, 0x00 };

(...)
mSelectResponse = internalTransmit(getResponseCmd);

}

6.4 Building CyanogenMod

After applying all the modifications, the last step is to build the system image for
the Samsung Galaxy S3 (i9300) and to install the resulting over-the-air update .zip
file:

$ source build/envsetup.sh
$ brunch i9300

The update .zip, that can be installed on the phone, is created under out/target/
product/i9300/cm-11-YYYYMMDD-UNOFFICIAL-i9300.zip.

SUMMARYANDOUTLOOK |51

7. Summary and Outlook

We gave an overview of secure element integration into mobile devices, the Open
Mobile API and its implementation for Android, the SEEK-for-Android project. We
found that several current Android devices, particularly devices manufactured by
Samsung, ship with an implementation of the Open Mobile API that allows access
to the UICC and possibly to other secure elements.

While all these implementations seem to be based on the SEEK-for-Android project,
we discovered that access to the UICC is usually facilitated through non-standard,
platform-specific interfaces. As a consequence, access to such secure elements is
not available in customized Android ROMs even when integrating the open-source
implementation of the Open Mobile API provided by the SEEK project.

In order to overcome this limitation, we assembled a toolbox for reverse-engineering
stock ROMs of Android devices. We used this toolbox to statically analyze the
stock ROM of a Samsung Galaxy S3 (international version) to find out how that
existing implementation accesses the UICC through the radio interface. Finally, we
reimplemented UICC access for this device in CyanogenMod 11.0.

As we found that CyanogenMod uses one common implementation to access the
radio interface library on all Exynos4-based devices (like the Galaxy S3 and the
Galaxy S2), we assume that all these devices may also use the same commands to
interact with the UICC. Hence, future tests could verify if the same methods are
usable on other Exynos4-based Android devices.

Moreover, the reverse-engineering toolbox could be used to analyze the implemen-
tations of other devices in order to implement support for access to UICC-based
secure elements in CyanogenMod on a broader range of mobile devices.

REFERENCES |53

References

[1] ECMA-373: Near Field Communication Wired Interface (NFC-WI). Rev. 1 (Jun
2006)

[2] ETSI TS 102 613: Smart Cards; UICC – Contactless Front-end (CLF) Inter-
face; Part 1: Physical and data link layer characteristics (Release 11). Technical
specification, V11.0.0 (Sep 2012)

[3] ETSI TS 127 007: Digital cellular telecommunications system (Phase 2+); Uni-
versal Mobile Telecommunications System (UMTS); AT command set for User
Equipment (UE) (3GPP TS 27.007 version 8.3.0 Release 8). Technical specifi-
cation, V8.3.0 (Apr 2008)

[4] Giesecke & Devrient: SEEK-for-Android – Secure Element Evaluation Kit for
the Android platform, Open Source Project, http://seek-for-android.github.io/

[5] Giesecke & Devrient: Using SmartCard API, SEEK-for-Android, https://
github.com/seek-for-android/pool/wiki/UsingSmartCardAPI

[6] Giesecke & Devrient: RIL Extension Specification. V0.2 (Oct 2010)

[7] Giesecke & Devrient: RIL Extension Specification Addendum A. V0.1 (Oct
2010)

[8] GlobalPlatform: Secure Element Access Control. Specification, Version 1.1 (Sep
2014)

[9] ISO/IEC 7816-3: Identification cards – Integrated circuit(s) cards with contacts
– Electronic signals and transmission protcols

[10] ISO/IEC 7816-4: Identification cards – Integrated circuit(s) cards with contacts
– Interindustry commands for interchange

[11] NFC Forum: NFC Controller Interface (NCI). Technical specification, 1.1 (Jul
2014)

[12] Roland, M.: Security Issues in Mobile NFC Devices. T-Labs Series in Telecom-
munication Services, Springer (2015)

[13] RSA Laboratories: PKCS #15 v1.1: Cryptographic Token Information Syntax
Standard (Jun 2000)

[14] SD Card Association: SD Specifications – Part A1 Advanced Security SD Ex-
tension Simplified Specification. Version 2.00 (May 2010)

http://seek-for-android.github.io/
https://github.com/seek-for-android/pool/wiki/UsingSmartCardAPI
https://github.com/seek-for-android/pool/wiki/UsingSmartCardAPI

54 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

[15] SD Card Association: SD Specifications – Part 1 Physical Layer Simplified Spec-
ification – NFC (Near Field Communication) Interface Simplified Addendum.
Version 1.00 (Nov 2013)

[16] SD Card Association: Activating New Mobile Services and Business Models
with smartSD Memory cards. White paper, revised version (Nov 2014)

[17] SIMalliance: NFC Secure Element Stepping Stones (Jul 2013)

[18] SIMalliance: Open Mobile API specification, V2.05 (Feb 2014)

REVERSE-ENGINEERING EXAMPLES |55

Appendix A. Reverse-Engineering Examples

This section contains examples of disassembled Dalvik code and its automated trans-
lation into Java source code using our reverse-engineering toolchain.

A.1 Method IccUtils.bytesToHexString()

A.1.1 Smali Assembler

1 .method public static bytesToHexString([B)Ljava/lang/String;
2 .registers 5
3 .param p0, "bytes" # [B
4
5 .prologue
6 .line 396
7 if-nez p0, :cond_4
8
9 const/4 v3, 0x0

10
11 .line 412
12 :goto_3
13 return-object v3
14
15 .line 398
16 :cond_4
17 new-instance v2, Ljava/lang/StringBuilder;
18 array-length v3, p0
19 mul-int/lit8 v3, v3, 0x2
20 invoke-direct {v2, v3}, Ljava/lang/StringBuilder;-><init>(I)V
21
22 .line 400
23 .local v2, "ret":Ljava/lang/StringBuilder;
24 const/4 v1, 0x0
25
26 .local v1, "i":I
27 :goto_d
28 array-length v3, p0
29 if-ge v1, v3, :cond_2f
30
31 .line 403
32 aget-byte v3, p0, v1
33 shr-int/lit8 v3, v3, 0x4
34 and-int/lit8 v0, v3, 0xf
35
36 .line 405
37 .local v0, "b":I
38 const-string v3, "0123456789abcdef"
39 invoke-virtual {v3, v0}, Ljava/lang/String;->charAt(I)C
40 move-result v3

56 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

41 invoke-virtual {v2, v3}, Ljava/lang/StringBuilder;->append(C)
Ljava/lang/StringBuilder;

42
43 .line 407
44 aget-byte v3, p0, v1
45 and-int/lit8 v0, v3, 0xf
46
47 .line 409
48 const-string v3, "0123456789abcdef"
49 invoke-virtual {v3, v0}, Ljava/lang/String;->charAt(I)C
50 move-result v3
51 invoke-virtual {v2, v3}, Ljava/lang/StringBuilder;->append(C)

Ljava/lang/StringBuilder;
52
53 .line 400
54 add-int/lit8 v1, v1, 0x1
55 goto :goto_d
56
57 .line 412
58 .end local v0 # "b":I
59 :cond_2f
60 invoke-virtual {v2}, Ljava/lang/StringBuilder;->toString()

Ljava/lang/String;
61 move-result-object v3
62 goto :goto_3
63 .end method

A.1.2 Generated Java Source Code

1 public static String bytesToHexString(byte[] paramArrayOfByte) {
2 if (paramArrayOfByte == null) {
3 return null;
4 }
5 StringBuilder localStringBuilder =
6 new StringBuilder(paramArrayOfByte.length * 2);
7 int i = 0;
8 while (i < paramArrayOfByte.length) {
9 localStringBuilder.append("0123456789abcdef"

10 .charAt(paramArrayOfByte[i] >> 4 & 0xF));
11 localStringBuilder.append("0123456789abcdef"
12 .charAt(paramArrayOfByte[i] & 0xF));
13 i += 1;
14 }
15 return localStringBuilder.toString();
16 }

A.1.3 Java Source Code Enriched with Information from Disassembly

1 public static String bytesToHexString(byte[] bytes) {

REVERSE-ENGINEERING EXAMPLES |57

2 if (bytes == null) {
3 return null;
4 }
5 StringBuilder ret = new StringBuilder(bytes.length * 2);
6 for (int i = 0; i < bytes.length; ++i) {
7 int b = (bytes[i] >> 4) & 0xF;
8 ret.append("0123456789abcdef".charAt(b));
9 b = bytes[i] & 0xF;

10 ret.append("0123456789abcdef".charAt(b));
11 }
12 return ret.toString();
13 }

A.2 Method PhoneInterfaceManager.openIccLogicalChannel()

A.2.1 Smali Assembler

1 .method public openIccLogicalChannel(Ljava/lang/String;)I
2 .registers 6
3 .param p1, "AID" # Ljava/lang/String;
4
5 .prologue
6 .line 922
7 sget-boolean v1, Lcom/android/phone/PhoneInterfaceManager;->DBG_ENG:Z
8 if-eqz v1, :cond_1c
9

10 const-string v1, "PhoneInterfaceManager"
11
12 new-instance v2, Ljava/lang/StringBuilder;
13 invoke-direct {v2}, Ljava/lang/StringBuilder;-><init>()V
14
15 const-string v3, ">␣openIccLogicalChannel␣"
16 invoke-virtual {v2, v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/String

;)Ljava/lang/StringBuilder;
17 move-result-object v2
18
19 invoke-virtual {v2, p1}, Ljava/lang/StringBuilder;->append(Ljava/lang/String

;)Ljava/lang/StringBuilder;
20 move-result-object v2
21
22 invoke-virtual {v2}, Ljava/lang/StringBuilder;->toString()Ljava/lang/String;
23 move-result-object v2
24
25 invoke-static {v1, v2}, Lcom/android/phone/Log;->d(Ljava/lang/String;

Ljava/lang/String;)I
26
27 .line 923
28 :cond_1c
29 const/16 v1, 0xe

58 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

30
31 new-instance v2, Lcom/android/phone/PhoneInterfaceManager$IccOpenChannel;
32 invoke-direct {v2, p1},

Lcom/android/phone/PhoneInterfaceManager$IccOpenChannel;-><init>(
Ljava/lang/String;)V

33
34 invoke-direct {p0, v1, v2}, Lcom/android/phone/PhoneInterfaceManager;->

sendRequest(ILjava/lang/Object;)Ljava/lang/Object;
35 move-result-object v0
36 check-cast v0, Ljava/lang/Integer;
37
38 .line 925
39 .local v0, "channel":Ljava/lang/Integer;
40 sget-boolean v1, Lcom/android/phone/PhoneInterfaceManager;->DBG_ENG:Z
41 if-eqz v1, :cond_45
42
43 const-string v1, "PhoneInterfaceManager"
44
45 new-instance v2, Ljava/lang/StringBuilder;
46 invoke-direct {v2}, Ljava/lang/StringBuilder;-><init>()V
47
48 const-string v3, "<␣openIccLogicalChannel␣"
49 invoke-virtual {v2, v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/String

;)Ljava/lang/StringBuilder;
50 move-result-object v2
51
52 invoke-virtual {v2, v0}, Ljava/lang/StringBuilder;->append(Ljava/lang/Object

;)Ljava/lang/StringBuilder;
53 move-result-object v2
54
55 invoke-virtual {v2}, Ljava/lang/StringBuilder;->toString()Ljava/lang/String;
56 move-result-object v2
57
58 invoke-static {v1, v2}, Lcom/android/phone/Log;->d(Ljava/lang/String;

Ljava/lang/String;)I
59
60 .line 926
61 :cond_45
62 invoke-virtual {v0}, Ljava/lang/Integer;->intValue()I
63 move-result v1
64 return v1
65 .end method

A.2.2 Generated Java Source Code

1 public int openIccLogicalChannel(String paramString) {
2 if (DBG_ENG) {
3 Log.d("PhoneInterfaceManager",
4 ">␣openIccLogicalChannel␣" + paramString);
5 }
6 paramString = (Integer)sendRequest(14,

REVERSE-ENGINEERING EXAMPLES |59

7 new IccOpenChannel(paramString));
8 if (DBG_ENG) {
9 Log.d("PhoneInterfaceManager",

10 "<␣openIccLogicalChannel␣" + paramString);
11 }
12 return paramString.intValue();
13 }

A.2.3 Java Source Code Enriched with Information from Disassembly

1 public int openIccLogicalChannel(String AID) {
2 if (DBG_ENG) {
3 Log.d("PhoneInterfaceManager",
4 ">␣openIccLogicalChannel␣" + AID);
5 }
6 Integer channel = (Integer)sendRequest(14,
7 new IccOpenChannel(AID));
8 if (DBG_ENG) {
9 Log.d("PhoneInterfaceManager",

10 "<␣openIccLogicalChannel␣" + channel);
11 }
12 return channel.intValue();
13 }

A.3 Method IccIoResult.getException()

A.3.1 Smali Assembler

1 .method public getException()Lcom/android/internal/telephony/IccException;
2 .registers 4
3
4 .prologue
5 .line 57
6 invoke-virtual {p0}, Lcom/android/internal/telephony/IccIoResult;->success()

Z
7 move-result v0
8 if-eqz v0, :cond_8
9

10 const/4 v0, 0x0
11
12 .line 67
13 :goto_7
14 return-object v0
15
16 .line 59
17 :cond_8
18 iget v0, p0, Lcom/android/internal/telephony/IccIoResult;->sw1:I
19 packed-switch v0, :pswitch_data_48

60 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

20
21 .line 67
22 new-instance v0, Lcom/android/internal/telephony/IccException;
23
24 new-instance v1, Ljava/lang/StringBuilder;
25 invoke-direct {v1}, Ljava/lang/StringBuilder;-><init>()V
26
27 const-string/jumbo v2, "sw1:"
28 invoke-virtual {v1, v2}, Ljava/lang/StringBuilder;->append(Ljava/lang/String

;)Ljava/lang/StringBuilder;
29 move-result-object v1
30
31 iget v2, p0, Lcom/android/internal/telephony/IccIoResult;->sw1:I
32 invoke-virtual {v1, v2}, Ljava/lang/StringBuilder;->append(I)

Ljava/lang/StringBuilder;
33 move-result-object v1
34
35 const-string v2, "␣sw2:"
36 invoke-virtual {v1, v2}, Ljava/lang/StringBuilder;->append(Ljava/lang/String

;)Ljava/lang/StringBuilder;
37 move-result-object v1
38
39 iget v2, p0, Lcom/android/internal/telephony/IccIoResult;->sw2:I
40 invoke-virtual {v1, v2}, Ljava/lang/StringBuilder;->append(I)

Ljava/lang/StringBuilder;
41 move-result-object v1
42
43 invoke-virtual {v1}, Ljava/lang/StringBuilder;->toString()Ljava/lang/String;
44 move-result-object v1
45
46 invoke-direct {v0, v1}, Lcom/android/internal/telephony/IccException;-><init

>(Ljava/lang/String;)V
47 goto :goto_7
48
49 .line 61
50 :pswitch_35
51 iget v0, p0, Lcom/android/internal/telephony/IccIoResult;->sw2:I
52 const/16 v1, 0x8
53 if-ne v0, v1, :cond_41
54
55 .line 62
56 new-instance v0, Lcom/android/internal/telephony/IccFileTypeMismatch;
57 invoke-direct {v0}, Lcom/android/internal/telephony/IccFileTypeMismatch;-><

init>()V
58 goto :goto_7
59
60 .line 64
61 :cond_41
62 new-instance v0, Lcom/android/internal/telephony/IccFileNotFound;
63 invoke-direct {v0}, Lcom/android/internal/telephony/IccFileNotFound;-><init

>()V
64 goto :goto_7

REVERSE-ENGINEERING EXAMPLES |61

65
66 .line 59
67 nop
68
69 :pswitch_data_48
70 .packed-switch 0x94
71 :pswitch_35
72 .end packed-switch
73 .end method

A.3.2 Generated Java Source Code

1 public IccException getException() {
2 if (success()) {
3 return null;
4 }
5 switch (this.sw1) {
6 default:
7 return new IccException("sw1:" + this.sw1 +
8 "␣sw2:" + this.sw2);
9 }

10 if (this.sw2 == 8) {
11 return new IccFileTypeMismatch();
12 }
13 return new IccFileNotFound();
14 }

A.3.3 Java Source Code Enriched with Information from Disassembly

1 public IccException getException() {
2 if (success()) {
3 return null;
4 }
5 switch (this.sw1) {
6 case 0x94:
7 if (this.sw2 == 8) {
8 return new IccFileTypeMismatch();
9 }

10 return new IccFileNotFound();
11
12 default:
13 return new IccException("sw1:" + this.sw1 +
14 "␣sw2:" + this.sw2);
15 }
16 }

IMPLEMENTATION: TELEPHONY SYSTEMSERVICE |63

Appendix B. Implementation: Telephony System Service

This appendix lists the reverse-engineered implementation of the UICC-access func-
tionality of the telephony system service and relevant framework classes. Some opti-
mizations were added to the reverse-engineered Java source code. Moreover, debug
information (like output of log messages) was removed.

B.1 Class PhoneInterfaceManager

This class is part of the application package /system/app/SecPhone.*.
1 package com.android.phone;

(...)
3 import android.os.AsyncResult;
4 import android.os.Handler;
5 import android.os.Looper;
6 import android.os.Message;
7 import com.android.internal.telephony.ITelephony.Stub;
8 import com.android.internal.telephony.IccIoResult;
9 import com.android.internal.telephony.IccUtils;

10 import com.android.internal.telephony.Phone;
11 import java.io.ByteArrayOutputStream;
12 import java.io.DataOutputStream;
13 import java.io.IOException;

(...)
15 public class PhoneInterfaceManager extends ITelephony.Stub {

(...)
17 private static final int CMD_EXCHANGE_APDU = 12;
18 private static final int EVENT_EXCHANGE_APDU_DONE = 13;
19 private static final int CMD_OPEN_CHANNEL = 14;
20 private static final int EVENT_OPEN_CHANNEL_DONE = 15;
21 private static final int CMD_CLOSE_CHANNEL = 16;
22 private static final int EVENT_CLOSE_CHANNEL_DONE = 17;
23 private static final int CMD_GET_ATR_INFO = 18;
24 private static final int EVENT_GET_ATR_INFO_DONE = 19;
25

(...)
27 private int lastError;
28 MainThreadHandler mMainThreadHandler;
29 Phone mPhone;
30 byte[] mSelectResponse = null;

(...)

64 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

32 private String exchangeIccAPDU(int cla, int ins,
33 int channelId ,
34 int p1, int p2,
35 int len, String dataStr) {
36 IccIoResult result = (IccIoResult)sendRequest(
37 CMD_EXCHANGE_APDU ,
38 new IccAPDUArgument(cla, ins,
39 channelId ,
40 p1, p2,
41 len, dataStr));
42
43 String sw = Integer.toHexString((result.sw1 << 8) +
44 result.sw2 +
45 0x10000).substring(1);
46 String respApdu = sw;
47 if (result.payload != null) {
48 respApdu = IccUtils.bytesToHexString(result.payload) + sw;
49 }
50 return respApdu;
51 }

(...)
53 private Object sendRequest(int command, Object argument) {
54 if (Looper.myLooper() == mMainThreadHandler.getLooper()) {
55 throw new RuntimeException("This␣method␣will␣deadlock␣if␣

called␣from␣the␣main␣thread.");
56 }
57
58 MainThreadRequest request = new MainThreadRequest(argument);
59 Message msg = mMainThreadHandler.obtainMessage(command,
60 request);
61 msg.sendToTarget();
62
63 synchronized (request) {
64 while (request.result == null) {
65 try {
66 request.wait();
67 } catch (InterruptedException e) {}
68 }
69 }
70
71 return request.result;
72 }

(...)
74 public boolean closeIccLogicalChannel(int channelId) {

IMPLEMENTATION: TELEPHONY SYSTEMSERVICE |65

75 Integer result = (Integer)sendRequest(
76 CMD_CLOSE_CHANNEL , new IccCloseChannel(channelId));
77 return result.intValue() != -1;
78 }

(...)
80 public byte[] getAtr() {
81 return (byte[])sendRequest(CMD_GET_ATR_INFO , null);
82 }

(...)
84 public int getLastError() {
85 return lastError;
86 }

(...)
88 public byte[] getSelectResponse() {
89 return mSelectResponse;
90 }

(...)
92 public int openIccLogicalChannel(String aidStr) {
93 Integer result = (Integer)sendRequest(
94 CMD_OPEN_CHANNEL , new IccOpenChannel(aidStr));
95 return result.intValue();
96 }

(...)
98 public String transmitIccLogicalChannel(int cla, int ins,
99 int channelId ,

100 int p1, int p2,
101 int len, String dataStr) {
102 return exchangeIccAPDU(cla, ins, channelId ,
103 p1, p2, len, dataStr);
104 }

(...)
106 private static final class IccAPDUArgument {
107 public int channel;
108 public int cla;
109 public int command;
110 public String data;
111 public int p1;
112 public int p2;
113 public int p3;
114
115 public IccAPDUArgument(int cla, int ins,
116 int channelId ,

66 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

117 int p1, int p2,
118 int len, String dataStr) {
119 this.channel = channelId;
120 this.cla = cla;
121 this.command = ins;
122 this.p1 = p1;
123 this.p2 = p2;
124 this.p3 = len;
125 this.data = dataStr;
126 }
127 }
128
129 private static final class IccCloseChannel {
130 public int sessionID;
131
132 public IccCloseChannel(int channelId) {
133 this.sessionID = channelId;
134 }
135 }
136
137 private static final class IccOpenChannel {
138 public String AID;
139
140 public IccOpenChannel(String aidStr) {
141 this.AID = aidStr;
142 }
143 }

(...)
145 private final class MainThreadHandler extends Handler {
146 private MainThreadHandler() {}
147
148 @Override
149 public void handleMessage(Message msg) {
150 MainThreadRequest request;
151 AsyncResult ar;
152 byte[] data;
153
154 switch (msg.what) {

(...)
156 break;
157
158 case CMD_EXCHANGE_APDU:
159 request = (MainThreadRequest)msg.obj;
160 IccAPDUArgument argumentAPDU =

IMPLEMENTATION: TELEPHONY SYSTEMSERVICE |67

161 (IccAPDUArgument)request.argument;
162
163 ByteArrayOutputStream bos =
164 new ByteArrayOutputStream();
165 DataOutputStream dos =
166 new DataOutputStream(bos);
167
168 int len = 9;
169
170 if (argumentAPDU.data != null) {
171 len += argumentAPDU.data.length() / 2;
172 }
173
174 if (argumentAPDU.p3 == -1) {
175 --len;
176 }
177
178 try {
179 dos.writeByte(0x15);
180 if (argumentAPDU.channel == 0) {
181 dos.writeByte(0x08);
182 dos.writeShort(len);
183 } else {
184 if (argumentAPDU.p3 != -1) {
185 dos.writeByte(0x0B);
186 } else {
187 dos.writeByte(0x0C);
188 }
189 dos.writeShort(len + 4);
190 }
191 dos.writeByte(argumentAPDU.cla);
192 dos.writeByte(argumentAPDU.command);
193 dos.writeByte(argumentAPDU.p1);
194 dos.writeByte(argumentAPDU.p2);
195 if (argumentAPDU.p3 != -1) {
196 dos.writeByte(argumentAPDU.p3);
197 }
198 if (argumentAPDU.channel != 0) {
199 dos.writeInt(argumentAPDU.channel);
200 }
201 if (argumentAPDU.data != null) {
202 byte[] ba = new byte[
203 argumentAPDU.data.length() / 2];
204 for (int i = 0; i < ba.length; ++i) {
205 ba[i] = (byte)Integer.parseInt(
206 argumentAPDU.data.substring(

68 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

207 i * 2, i * 2 + 2),
208 16);
209 }
210 dos.write(ba);
211 }
212 } catch (IOException e) {}
213
214 mPhone.invokeOemRilRequestRaw(
215 bos.toByteArray(),
216 obtainMessage(EVENT_EXCHANGE_APDU_DONE ,
217 request));
218
219 try {
220 dos.close();
221 } catch (IOException e) {}
222 break;
223
224 case EVENT_EXCHANGE_APDU_DONE:
225 ar = (AsyncResult)msg.obj;
226 request = (MainThreadRequest)ar.userObj;
227
228 if ((ar.exception == null) && (ar.result != null) &&
229 (((byte[])ar.result).length >= 2)) {
230 byte[] b = (byte[])ar.result;
231
232 if (b.length > 2) {
233 data = new byte[b.length - 2];
234 System.arraycopy(b, 0, data, 0, data.length);
235 } else {
236 data = null;
237 }
238
239 request.result = new IccIoResult(
240 b[b.length - 2] & 0x0FF,
241 b[b.length - 1] & 0x0FF,
242 data);
243 lastError = 0;
244 } else {
245 request.result = new IccIoResult(0x6F, 0x00,
246 null);
247 lastError = 1;
248
249 if ((ar.exception != null) &&
250 (ar.exception instanceof CommandException)) {
251 CommandException e =
252 (CommandException)ar.exception;

IMPLEMENTATION: TELEPHONY SYSTEMSERVICE |69

253 if (e.getCommandError() ==
254 CommandException.Error.INVALID_PARAMETER) {
255 lastError = 5;
256 }
257 }
258 }
259
260 synchronized (request) {
261 request.notifyAll();
262 }
263 break;
264
265 case CMD_OPEN_CHANNEL:
266 request = (MainThreadRequest)msg.obj;
267 IccOpenChannel openArgument =
268 (IccOpenChannel)request.argument;
269
270 ByteArrayOutputStream bos_open =
271 new ByteArrayOutputStream();
272 DataOutputStream dos_open =
273 new DataOutputStream(bos_open);
274
275 int len_open = 4;
276
277 if (openArgument.AID != null) {
278 len_open += openArgument.AID.length() / 2;
279 }
280
281 try {
282 dos_open.writeByte(0x15);
283 dos_open.writeByte(0x09);
284 dos_open.writeShort(len_open);
285 if (openArgument.AID != null) {
286 byte[] ba = new byte[
287 openArgument.AID.length() / 2];
288 for (int i = 0; i < ba.length; ++i) {
289 ba[i] = (byte)Integer.parseInt(
290 openArgument.AID.substring(
291 i * 2, i * 2 + 2),
292 16);
293 }
294 dos_open.write(ba);
295 }
296 } catch (IOException e) {}
297
298 mPhone.invokeOemRilRequestRaw(

70 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

299 bos_open.toByteArray(),
300 obtainMessage(EVENT_OPEN_CHANNEL_DONE ,
301 request));
302
303 try {
304 dos_open.close();
305 } catch (IOException e) {}
306 break;
307
308 case EVENT_OPEN_CHANNEL_DONE:
309 ar = (AsyncResult)msg.obj;
310 request = (MainThreadRequest)ar.userObj;
311
312 if ((ar.exception == null) && (ar.result != null)) {
313 data = (byte[])ar.result;
314 int id_len = data[0];
315 int select_res_len = data[id_len + 1];
316
317 int channelId = 0;
318 for (int i = id_len; i >= 1; --i) {
319 channelId <<= 8;
320 channelId |= data[i] & 0x0FF;
321 }
322
323 if (select_res_len > 0) {
324 mSelectResponse = new byte[select_res_len];
325 System.arraycopy(data, id_len + 2,
326 mSelectResponse , 0,
327 select_res_len);
328 } else {
329 mSelectResponse = null;
330 }
331
332 request.result = new Integer(channelId);
333 lastError = 0;
334 } else {
335 request.result = new Integer(0);
336 lastError = 1;
337
338 if ((ar.exception != null) &&
339 (ar.exception instanceof CommandException)) {
340 CommandException e =
341 (CommandException)ar.exception;
342 if (e.getCommandError() ==
343 CommandException.Error.MISSING_RESOURCE) {
344 lastError = 2;

IMPLEMENTATION: TELEPHONY SYSTEMSERVICE |71

345 } else if (e.getCommandError() ==
346 CommandException.Error.NO_SUCH_ELEMENT) {
347 lastError = 3;
348 }
349 }
350 }
351
352 synchronized (request) {
353 request.notifyAll();
354 }
355 break;
356
357 case CMD_CLOSE_CHANNEL:
358 request = (MainThreadRequest)msg.obj;
359 IccCloseChannel closeArgument =
360 (IccCloseChannel)request.argument;
361
362 ByteArrayOutputStream bos_close =
363 new ByteArrayOutputStream();
364 DataOutputStream dos_close =
365 new DataOutputStream(bos_close);
366
367 int len_close = 4;
368
369 if (closeArgument.sessionID != 0) {
370 len_close += 4;
371 }
372
373 try {
374 dos_close.writeByte(0x15);
375 dos_close.writeByte(0x0A);
376 dos_close.writeShort(len_close);
377 if (closeArgument.sessionID != 0) {
378 dos_close.writeInt(closeArgument.sessionID);
379 }
380 } catch (IOException e) {}
381
382 mPhone.invokeOemRilRequestRaw(
383 bos_close.toByteArray(),
384 obtainMessage(EVENT_CLOSE_CHANNEL_DONE ,
385 request));
386
387 try {
388 dos_close.close();
389 } catch (IOException e) {}
390 break;

72 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

391
392 case EVENT_CLOSE_CHANNEL_DONE:
393 ar = (AsyncResult)msg.obj;
394 request = (MainThreadRequest)ar.userObj;
395
396 if (ar.exception == null) {
397 request.result = new Integer(0);
398 lastError = 0;
399 } else {
400 request.result = new Integer(-1);
401 lastError = 1;
402
403 if ((ar.exception instanceof CommandException)) {
404 CommandException e =
405 (CommandException)ar.exception;
406 if (e.getCommandError() ==
407 CommandException.Error.INVALID_PARAMETER) {
408 lastError = 5;
409 }
410 }
411 }
412
413 synchronized (request) {
414 request.notifyAll();
415 }
416 break;
417
418 case CMD_GET_ATR_INFO:
419 request = (MainThreadRequest)msg.obj;
420
421 ByteArrayOutputStream bos1 =
422 new ByteArrayOutputStream();
423 DataOutputStream dos1 =
424 new DataOutputStream(bos1);
425
426 try {
427 dos1.writeByte(0x15);
428 dos1.writeByte(0x0D);
429 dos1.writeShort(4);
430 } catch (IOException e) {}
431
432 mPhone.invokeOemRilRequestRaw(
433 bos1.toByteArray(),
434 obtainMessage(EVENT_GET_ATR_INFO_DONE ,
435 request));
436

IMPLEMENTATION: TELEPHONY SYSTEMSERVICE |73

437 try {
438 dos1.close();
439 } catch (IOException e) {}
440 break;
441
442 case EVENT_GET_ATR_INFO_DONE:
443 ar = (AsyncResult)msg.obj;
444 request = (MainThreadRequest)ar.userObj;
445
446 data = null;
447
448 if ((ar.exception == null) && (ar.result != null)) {
449 byte[] result = (byte[])ar.result;
450 if (result[0] > 0) {
451 data = new byte[result[0] & 0x0FF]
452 System.arraycopy(result, 2,
453 data, 0, data.length);
454 }
455 }
456 request.result = data;
457
458 synchronized (request) {
459 request.notifyAll();
460 }
461 break;

(...)
463 default:
464 return;
465 }
466 }
467 }
468
469 private static final class MainThreadRequest {
470 public Object argument;
471 public Object result;
472
473 public MainThreadRequest(Object argument) {
474 this.argument = argument;
475 }
476 }

(...)
478 }

74 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

B.2 Class IccIoResult

This class is part of the framework package /system/framework/framework.odex.

1 package com.android.internal.telephony;
2
3 public class IccIoResult {
4 public byte[] payload;
5 public int sw1;
6 public int sw2;
7
8 public IccIoResult(int sw1, int sw2, String dataStr) {
9 this(sw1, sw2, IccUtils.hexStringToBytes(dataStr));

10 }
11
12 public IccIoResult(int sw1, int sw2, byte[] data) {
13 this.sw1 = sw1;
14 this.sw2 = sw2;
15 this.payload = data;
16 }
17
18 public IccException getException() {
19 if (success()) {
20 return null;
21 }
22 switch (sw1) {
23 case 0x94:
24 if (sw2 == 0x08) {
25 return new IccFileTypeMismatch();
26 } else {
27 return new IccFileNotFound();
28 }
29
30 default:
31 return new IccException("sw1:" + sw1 +
32 "␣sw2:" + sw2);
33 }
34 }
35
36 public boolean success() {
37 return (sw1 == 0x90) || (sw1 == 0x91) ||
38 (sw1 == 0x9E) || (sw1 == 0x9F);
39 }
40
41 public String toString() {
42 return "IccIoResponse␣sw1:0x" + Integer.toHexString(sw1)

IMPLEMENTATION: TELEPHONY SYSTEMSERVICE |75

43 + "␣sw2:0x" + Integer.toHexString(sw2);
44 }
45 }

B.3 Class IccUtils

This class is part of the framework package /system/framework/framework.odex.
1 package com.android.internal.telephony;

(...)
3 public class IccUtils {
4 private static final String HEX = "0123456789abcdef";

(...)
6 public static String byteToHexString(byte b) {
7 StringBuilder sb = new StringBuilder(2);
8 sb.append(HEX.charAt((b >> 4) & 0xF));
9 sb.append(HEX.charAt(b & 0xF));

10 return sb.toString();
11 }
12
13 public static String bytesToHexString(byte[] bArray) {
14 if (bArray == null) {
15 return null;
16 }
17
18 StringBuilder sb = new StringBuilder(bArray.length * 2);
19 for (int i = 0; i < bArray.length; ++i) {
20 sb.append(HEX.charAt((bArray[i] >> 4) & 0xF));
21 sb.append(HEX.charAt(bArray[i] & 0xF));
22 }
23
24 return sb.toString();
25 }

(...)
27 static int hexCharToInt(char c) {
28 if ((c >= '0') && (c <= '9')) {
29 return c - '0';
30 } else if ((c >= 'A') && (c <= 'F')) {
31 return c - 'A' + 10;
32 } else if ((c >= 'a') && (c <= 'f')) {
33 return c - 'a' + 10;
34 } else {
35 throw new RuntimeException("invalid␣hex␣char␣'" +

76 | OPENMOBILE API: ACCESSING THEUICC ONANDROIDDEVICES

36 c + "'");
37 }
38 }
39
40 public static byte[] hexStringToBytes(String str) {
41 if (str == null) {
42 return null;
43 }
44
45 final int j = str.length();
46 byte[] bArray = new byte[j / 2];
47
48 int i = 0;
49 for (int i = 0; i < j; i += 2) {
50 bArray[i / 2] =
51 (byte)(hexCharToInt(str.charAt(i)) << 4 |
52 hexCharToInt(str.charAt(i + 1)));
53 }
54
55 return bArray;
56 }

(...)
58 }

	Contents
	Introduction
	Secure Element Integration
	Embedded Secure Element
	Universal Integrated Circuit Card (UICC)
	Micro SD Card (smartSD/ASSD)

	Open Mobile API
	Overall Architecture
	Secure Element Access Control
	An Implementation: SEEK-for-Android Smartcard API
	Secure Element Provider Interface before Version 4.0.0
	Integration as Compiled-In Terminal
	Integration as Add-On Terminal
	Interface Methods

	Secure Element Provider Interface since Version 4.0.0
	Service Interface
	Differentiation between System and Add-on Terminals

	Availability in Devices

	Reverse-Engineering Android Applications
	Tools
	Using the Tools
	Downloading Files from the Device
	Preparing the Framework Files
	De-optimizing Dalvik Executables
	Unpacking Application Packages
	Converting Dalvik Bytecode to Java Bytecode
	Decompiling Java Bytecode

	Interpreting Decompiled Code: Results

	SEEK on the Galaxy S3
	Open Mobile API Framework
	Smartcard System Service
	UICC Terminal Interface
	Telephony System Service
	RIL_REQUEST_OEM_HOOK_RAW
	Getting the Answer-to-Reset
	Opening a Logical Channel
	Closing a Logical Channel
	Exchanging an APDU Command on the Basic Channel
	Exchanging an APDU Command on a Logical Channel

	Adding UICC Terminal Support to CyanogenMod
	CyanogenMod 11.0 for the Samsung Galaxy S3
	Patches to Include SEEK-for-Android
	Enabling UICC Access through SEEK
	Radio Interface Layer
	Telephony System Service
	Smartcard System Service

	Building CyanogenMod

	Summary and Outlook
	References
	Appendix Reverse-Engineering Examples
	Method IccUtils.bytesToHexString()
	Smali Assembler
	Generated Java Source Code
	Java Source Code Enriched with Information from Disassembly

	Method PhoneInterfaceManager.openIccLogicalChannel()
	Smali Assembler
	Generated Java Source Code
	Java Source Code Enriched with Information from Disassembly

	Method IccIoResult.getException()
	Smali Assembler
	Generated Java Source Code
	Java Source Code Enriched with Information from Disassembly

	Appendix Implementation: Telephony System Service
	Class PhoneInterfaceManager
	Class IccIoResult
	Class IccUtils

