# 浅谈 SIM 卡虚拟化及云服务的发展趋势

作者: 龚智辉 (优克云联 CTO)

来源: 黑马汇 https://www.sohu.com/a/368011397\_574724

记得 1997 年我刚参加工作得到第一部摩托罗拉手机的时候,第一件事情就是到移动营业厅去开一张 SIM 卡,有了这张卡才可以打电话、发短信。一张 SIM 卡可以使用好多好多年,感觉只要不丢就可以用到天荒地老;换手机的时候只需要把 SIM 卡拔出来放入新手机,就可以继续使用原来的电话号码。还能通过 SIM 卡存储或转存通信录,最初的时候为了方便查找联系人,中文姓名前还会加上首字母,尽管已过去了 20 多年,一些老朋友在我的手机通信录里至今还是以这样的形式出现。

我曾经在一个运营信息交换电子商务平台的公司工作,为券商提供证券交易的综合服务平台,其中有个功能就是支持手机炒股,我们使用了 STK 技术。手机只要换上 STK SIM 卡,就可以使用手机菜单进行股票的查询、买、卖、撤单等各种操作。现在看来就是最原始的移动互联网应用之一。

今天,手机 SIM 卡作为开启每个人移动通信服务以及连接互联网大门的钥匙,其重要性、安全性、便利性一直备受 关注。

SIM 卡从 1991 年在芬兰移动网络运营商率先商用以来,到现在已经有将近三十年的历史。对于普通用户来说,最直观的感觉就是 SIM 卡越做越小 —— 苹果公司一直在积极地推动 SIM 卡的小型化,2010 年在 iPhone 4 上首次使用微型 SIM 卡,2012 年在 iPhone 5 上开始使用纳米 SIM 卡。

其实,无论是全尺寸(Full-size,1FF,85.6×53.98)、迷你卡(Mini SIM,2FF, 25×15)、微型卡(Micro-SIM,3FF, 15×12)还是纳米卡(Nano-SIM,4FF, 12.3×8.8),SIM 卡的物理结构都基本相同,只是封装方式上的区别。

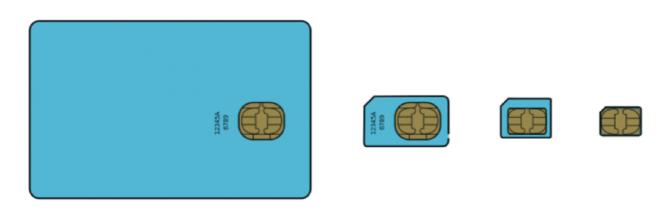



图 1 各种规格的SIM卡 (来源: https://en.wikipedia.org/wiki/SIM\_card)

随着苹果公司在 iPad Air 2 上使用 Apple SIM,软卡和 eSIM 这些名称也陆续进入大众的视野,然而这些 SIM 卡已 经是只闻其名不见其形了。

未来,SIM 卡将以怎样的形态出现在我们的生活中呢?本文就试着从 SIM 的起源开始,简单探讨一下 SIM 技术的演进发展历程和 SIM 卡虚拟化及云服务的未来。

#### 实体 SIM 卡

SIM 卡的名称来源于英文 Subscriber Identity Module 或 Subscriber Identification Module 的缩写,是为了安全 地存储国际移动用户身份(IMSI,International Mobile Subscriber Identity)、用户号码及其关联密钥以及其他 移动网络连接信息的一种集成电路,用于在移动通信设备(包括:移动电话、平板电脑、移动电脑等)连接移动通 信网络时识别用户身份及鉴权。

SIM 卡标准最初由欧洲电信标准协会在规范中制定,编号为 TS 11.11。本规范描述了 SIM 卡的物理和逻辑行为;随着 UMTS 的发展,规范工作被部分转移到 3GPP。3GPP 现在负责诸如 SIM(TS 51.011 [4])和 USIM(TS 31.102 [5])和 ETSI 等应用程序的进一步开发,以便物理卡 UICC 进一步发展。

SIM 卡的物理接口使用智能卡标准接口 ISO/IEC 7816,并一直沿用至今。核心是一个集成电路芯片,使用不同大小的封装方式,形态基本保持相同(见图 2)。

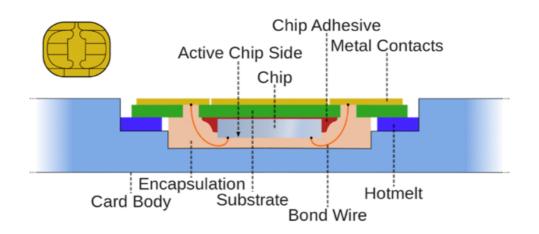



图 2 SIM卡物理结构图(来源: https://en.wikipedia.org/wiki/SIM\_card)

GSM 时代,SIM 卡是软硬件一体的。随着第三代移动通信 UMTS 的出现,SIM 卡的软硬件则逐步分离。目前,SIM 的实际意义就是应用软件,而硬件部分是 UICC,也就是芯片的物理本体,集成电路芯片。软件部分对于 UMTS 来说就是引入的 USIM(通用订户身份模块);SIM 卡中的软件包括底层操作系统和上层各种软件,包括操作系统、Java 虚拟机、Toolkit、OTA 等。3GPP 的 TS11.14 规范了 SIM 应用工具包(STK)技术,允许在 SIM 卡中加载应用。这样在 SIM 卡上进行开发和配置就更加简单方便。本文引言中提到的 2000 年左右开发的手机炒股,还有当时招商银行与中国移动合作开发的手机银行,以及影响了一代人、救活了一个伟大互联网公司的手机 QQ,都是使用了 STK 这个技术。

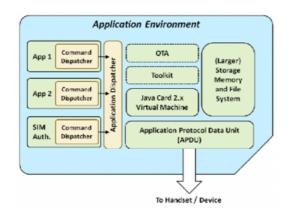



图 3 SIM卡内部软件结构

随着物联网的发展,越来越多的非通信设备也需要接入移动网络,因此对嵌入式 SIM 卡(eSIM)的需求不断增加,GSMA(全球移动通信联盟)推出了 RSP(远程 SIM 卡配置)规范,各种设备都可以预先嵌入式安装 eSIM 卡,当用户启动设备时,再按需开通和下载不同运营商的 SIM 卡用户参数和相关密钥,实现在线开通 SIM 卡。苹果公司在 iPad、iPhone 以及 Apple Watch 所使用的 AppleSIM,就是使用 eSIM 技术。

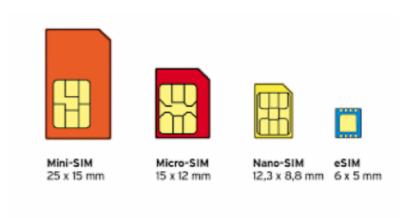



图 4 eSIM与其他SIM卡的大小比较

## 虚拟 SIM 卡

SIM 卡技术的引入,将通信设备的认证鉴权集中到了一个小小的 SIM 卡。不仅方便了移动设备的独立发展,也方便了 SIM 技术自身的不断发展。但是,随着人们在现实生活中对移动通信技术的越来越广泛应用,特别是移动互联网技术的发展,最终用户在各个方面的使用越来越多,SIM 卡在使用过程中的一些限制也越来越突出:

l 机卡绑定,即移动通信设备与指定的 SIM 卡绑定,如需更换运营商,则需要连同手机一起更换。

I 通常情况下,一张 SIM 卡只能对应一个运营商的网络,用户如需转网,原有 SIM 卡无法重用,必须重新开卡。

I 跨国旅行时如需使用当地 SIM 卡,用户必须将原来的 SIM 卡移除,无法同时使用。即使存在多卡多待的手机,可以容纳的 SIM 卡数量也很有限,绝大多数手机仅支持双卡。

为了解决这些问题,特别是为了解决漫游地上网问题,各种突破 SIM 卡限制的技术应运而生。其中最常使用的技术就是 SIM 卡虑拟化技术;其可行性来源于以下几种技术基础:

- 1) 卡规范上通过 USIM 技术,将软件部分和硬件本体分离,为 SIM 卡虚拟化提供了最基本的条件。
- 2) SAP 协议: SIM 卡访问协议(SIM Access Profile),支持远程对 SIM 卡进行操作。SAP 协议最早应用在车载蓝 牙电话模块。车载模块可以通过蓝牙使用用户手机中的 SIM 使用电话功能。这样可以实现一个通信设备使用不在设备内的 SIM 卡。
- 3) 虚拟机技术: SIM 的软件部分原本就是操作系统和其中的软件及相关模块,使用虚拟机技术,非常容易在虚拟机管理系统中虚拟出一个 SIM 卡的软件系统来。
- 4) RSP 规范: RSP 是 eSIM 的供卡规范,支持 M2M 方式和 Consumer 方式。其中 Consumer 方式,是通过一般 网络连接,通过安全通信协议,将 SIM 订户信息及相关安全认证信息下载到 eSIM 中,实现 SIM 卡的下载。

下面简单介绍一下几种常见的 SIM 卡虚拟化技术:

## 1. 接口延伸法

将 SIM 卡的接口通过物理电路延伸到另外一个模块。在新的模块中,承接原有的 SIM 卡,同时支持插入其他 SIM 卡,或者通过软件模块,获得从其他地方下载的 SIM 卡。扩展出来的模块可以自主开发,进一步扩展其他功能。




图 5 通过卡槽使用电路扩展的SIM卡模块 (来源:百度图片)

# 2. 贴片扩展法

在 SIM 卡上,重新贴上一个很薄的芯片,实现原来 SIM 卡的二次扩展。由于通过另外的电路嵌入到已有的 SIM 卡系统中,所以,可以在贴片上额外增加其他功能,比如电子钱包。

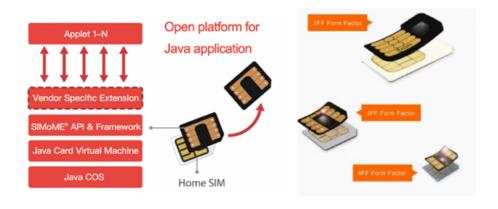



图 6 薄膜SIM卡 (来源: http://www.taisys.com)

# 3. 近距离无线延展法

通过蓝牙本地连接,利用 SAP 协议,或其他特有协议,通信设备可以非常方便地使用扩展设备所提供的 SIM 卡。 SAP 协议(SIM Access Profile)由国际蓝牙组织(Bluetooth.org)2000 年开始制定,2005 年出 1.0 正式版本,2008 年出 1.1 正式版本,这个协议是移动设备与 SIM 卡分离的关键。因为,既然可以本地无线,也就可以通过移动网和互联网无限延伸了。而且,这个通过蓝牙供卡的设备,还可以通过其他通信手段从网络上获得其他的 SIM 卡。





图 7 使用蓝牙连接的SIM卡适配器

(来源: https://www.dhgate.com/product/skyroam-gmate-adaptor-dual-sim-bluetooth/150100632.html)

#### 4. 网络远程延展法

通过互联网,连接部署在远程的 SIM 卡,非常方便地使用位于全球网络可以触达的任何地方的 SIM 卡。这个技术来源于远程 SIM 技术,在 2000 年代中期,大量应用在移动通信公司的漫游 SIM 的远程拨测设备(RTU)(参考 2007 年 11 月期《广东科技》的 "SIM 卡池及异地调度技术的实现与应用")。但这种技术在普通用户的移动设备上应用则是 2011 年以后,优克联、斯凯荣、iQsim、Aicent 都利用这个技术来解决用户移动漫游问题,将 SIM 卡异地调度技术应用到普通的终端设备上,通过远程连接来使用云端卡池中的 SIM 卡。

# 5. 虚拟机扩展法

前面几种方法都是将 SIM 卡在物理空间上的延伸,使用远程或另外的 SIM 卡来替换通信设备中的 SIM 卡。但实际的使用过程中从实用性考虑,还是需要在本地有一个 SIM 卡比较好。

而本方法在通信终端中不需要 SIM 卡的物理本体,直接将 SIM 软件使用虚拟机进行仿真模拟,具备 SIM 所有的接口功能,通过软件接口(比如 SAP 协议)提供物理卡的所有功能。只有在需要使用到只有物理卡中才有的信息(比如密钥)时,才调用远程 SIM 卡。这是一种更加高效实用的方法。

我们知道,SIM 卡识别身份最重要的就是 SIM 卡硬件中的密钥。尽管密钥是一串数字,但 SIM 卡在制作的时候,将这个密钥和软件捆绑在一起,确保更高的安全级别。其实,软件运行在 SIM 卡上和运行在任何计算机模拟的计算空间都是一样的,关键还是在密钥。

按照密钥所存放位置的不同,又衍生出来以下三种技术:

- 1) eSIM 技术: GSMA 推荐技术,基本维持了物理实体 SIM 卡所具备的安全级别,通过 RSP 协议,将所有 SIM 信息安全地从远端下载存储到 eSIM 这个物理设备中。也就是将以前在 SIM 卡工厂写卡的一些动作,推迟到用户按需订购后再写卡。
- 2) 软卡技术: 这个技术就是将 SIM 卡中所有的配置以及密钥,都以软件的形式在设备的操作系统中模拟出一个虚拟的 SIM 卡。
- 3) 远程虚拟卡技术: 这个技术是将卡在用户设备端使用虚拟机的方式进行模式,当需要使用 SIM 卡的时候,需要使用 SAP 或其他相似技术,远程访问部署在远端的物理 SIM 来完成鉴权。这个技术与软卡的不同点在验证密钥还在物理卡中。

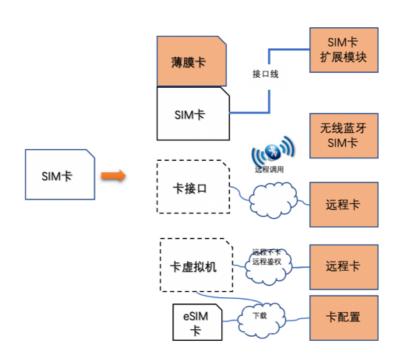



图 8 SIM卡的多种虚拟化方式

基于虚拟 SIM 卡技术衍生的漫游解决方案

大部分技术的发展都是为了解决实际应用场景中的问题而产生的,前面所描述的 SIM 技术的不断突破,很多都是受用户漫游问题所驱动的。

为了解决漫游地高额话费以及漫游地通信不方便的问题,移动电话用户一直在期望有更好的办法解决移动漫游问题,方便出行时连接互联网。特别是 2005 年以来移动互联网的发展,更加促进了异地使用非漫游的本地卡上网的

需要。

实际生活中,用户解决漫游问题常常使用以下几种方法:

I 购买目的地 SIM 卡使用:到达目的地后购买并更换 SIM 卡使用,或者插入到双卡手机,总之需要占用一个卡槽;

I 插卡 MiFi(随身无线路由器):使用可以插卡的上网设备(俗称插卡猫),购买目的地的 SIM 卡,并插入到设备中使用。设备提供 Wifi 热点信号,供移动设备连接使用。设备连接的网络和具备的连接能力,依赖于所购买的 SIM 卡。

I 免插卡 MiFi: 无需插卡,只要购买所需的流量包,就可以使用上网功能。流量包可能是全球多个国家通用的,使用方便,且价格上普遍比插卡 MiFi 更便宜。

I eSIM 技术:通过其他网络(如 WiFi)在线购买目的地运营商提供的 eSIM 卡进行上网。但目前该技术并不受大多数运营商欢迎,因此在市场上普遍供应不足。从苹果公司的 Apple SIM 推进情况就可以得到印证。Apple Watch 开通上网卡在中国一波三折,更别说其他品牌的移动电话了。所以说,eSIM 技术的推广运营商的供应是关键。

I 软卡技术: 这也是目前市面上比较常用的技术, 如华为天际通、红茶移动都是使用这一技术。

I 手机内嵌全球上网技术:使用云端卡池,用户根据自身需要选择购买对应流量套餐并激活使用。优克联在 2018 年 巴塞罗那移动大会上推出世界手机 S1 就是使用了这个技术,通过 GlocalMe Inside 方案将远程虚拟卡技术整合到 手机的基带中。目前小米部分型号手机支持该功能,估计未来还会有更多品牌和型号的手机陆续支持。

#### 从以上分析可以看出:

I eSIM 技术是官方推出的技术,但运营商不热心,叫好不叫座也没有办法。

I 软卡技术,由于存在安全风险,GSMA 不建议使用,运营商及相关厂商投鼠忌器,不敢大规模推广。

I 免插卡 MiFi 是相对性能优异且安全的技术,但需要携带额外的设备,造成了一定负担。一些免插卡 MiFi 兼顾充电宝功能,用户接受度更高。

I 直接将免插卡 MiFi 的技术植入手机,是更符合用户期望的方式,不影响用户原有 SIM 卡的使用,性能和安全性也最有保障。

#### SIM 卡云服务解决方案

移动通信的特点使得不同运营商提供的服务必然是存在差异的,以中国为例,三大运营商的覆盖就各有特点,例如:中国移动基站数量最多,大部分区域的信号覆盖就最好;但是中国移动的用户数量也最多,在高峰期网络拥塞的情况也最严重,用户即使处于良好的覆盖条件下也难以获得满意的网速,联通和电信在这时候却有更好的体验;另外,价格也是用户考虑的一个重要指标,特别是在出国漫游使用时。因此,如果用户只能使用手机中原有的一张SIM卡,那么就很可能遭遇到:有时候覆盖信号差;有时候网络拥塞上网速度慢;有时候需要支付高额的漫游费用;有时候套餐流量用尽只能到处蹭免费 Wi-Fi......

应对这些问题,最根本的解决方案是: 允许用户更方便的更换 SIM 卡,从而令用户可以根据自己的需求,随时随地自由选择提供服务的运营商,以及所需的网络服务套餐。

而实现这一解决方案,上述软卡、eSIM、远程 SIM 卡等技术都是可行的,但是考虑到提供全球范围上百个国家的 网络服务、SIM 卡供应的问题也必须通盘考虑。

针对 SIM 卡的供应来源,我们针对上述虚拟 SIM 卡技术展开逐一分析。

I 软卡:由于密钥可以随着软件拷贝,在安全上存在着使用方面的风险,完全依赖于对卡的使用方的信任。

I eSIM 卡:可以解决软卡的安全上的担忧,但是,由于运营商在商业上希望对用户锁定来进行自我保护,不想把用户选择的权利下放到手机,目前 eSIM 的供应量有限,因此,目前 eSIM 的应用主要集中在物联网领域。

I 远程 SIM 卡:由于使用普通的物理卡,SIM 卡来源不存在特殊性,因此可以在全球范围内获得充足的供卡。

从安全性和 SIM 卡供应两方面来看,远程 SIM 卡技术是比较好的,另外,对便利性、实施成本、流量成本等其他 方面一并考虑后,下表是对这三种技术的对比分析。

| 项目     | 远程SIM卡                                                            | eSIM <del>卡</del>             | 软(SIM)卡                                      |
|--------|-------------------------------------------------------------------|-------------------------------|----------------------------------------------|
| 形态     | 物理的,各种变体,从1FF、<br>2FF(Mini SIM) 、3FF(Micro<br>SIM)到4FF(Nano SIM)。 | 物理的,形态上可以是物理卡、<br>芯片和芯片内置模块等  | 软件形态,包括重建卡操作系统(COS)所需的所有软件要素,一般通过虚拟COS的形态存在。 |
| 密钥存放位置 | 卡内                                                                | 卡内,通过卡供应协议安全传<br>递            | 软件内,通过卡供应协议安<br>全传递,可移动                      |
| 实例化    | 维持物理卡的实体,不进行<br>变更                                                | 在eSIM卡中进行物理实例化                | 在软件模块中进行软件实例<br>化                            |
| 安全等级   | 最高                                                                | 其次                            | 最差                                           |
| 可获得性   | 最普遍                                                               | 运营商刚刚开始接受                     | GSMA不鼓励,少数运营商提供,一般大运营商不提供                    |
| 实施成本   | 鉴权需要额外通道,成本稍<br>贵                                                 | 需要通过专门的认证,有进入<br>成本,而且涉及到多方协议 | 实施最简单                                        |
| 采购成本   | 低                                                                 | 较高                            | 最高                                           |

从以上分析来看,目前远程 SIM 卡还是最合适的供卡方式,其次是软卡,最后是 eSIM 卡。随着物联网的普及,在物联网领域 eSIM 会有比较好的期望,但还是需要观望。

# 各种虚拟卡的比较



图 9 虚拟卡技术比较雷达图

显然,普通用户并不会关心使用具体什么技术,用户所需要的只是一个自己满意的漫游及本地上网解决方案—— 无论何时何地,购买了设备及服务套餐就可以上网。而作为对应的服务提供商,则要求解决方案具备以下特点:

- I 具有连接全球移动网络所覆盖的所有区域的 SIM 卡卡池(覆盖能力)
- 1具有动态感知移动终端所在区域的网络并动态换卡的能力(联网能力)
- | 具有为用户提供连接服务的按需服务的能力(可自由选择)
- I 具有根据用户使用需求动态扩充性能的能力(容量扩充能力)
- I 具有灵活的计费能力,支撑用户的购买需求和透明消费的需求(可计费)
- |具有优质的网络连接服务质量(最佳连接)

这些特点正好反映了云计算的弹性服务、资源池化、按需服务、服务可计费、泛在接入的五大特点,因此我们将满足以上特点的解决方案称为 SIM 卡云服务解决方案,简称云卡。通过将各种 SIM 卡资源池化,然后将连接资源的能力虚拟化之后,实现用户根据需要弹性购买。随着 5G 技术的发展,连接能力的虚拟化会更加多维度,给用户更多的选择空间。云卡正好借鉴现代云计算技术来实现 SIM 卡所提供的连接服务的云化。

云卡云服务系统包括以下基本要素:

# 1) 云卡终端:

I 同时支持各种虚拟卡技术,包括 eSIM 卡、远程物理卡、软卡,并具备良好的扩展能力,支持未来各种各样的 SIM 卡;

- 1 具备根据网络环境动态换卡的能力;
- I 具有高度安全的 SIM 卡保护机制,确保云卡在网络连接安全性、计费准确性;

# 1 具有良好的质量监控与保障机制;

# 2) 云卡平台

I 具有容纳全球各种各样 SIM 卡的管理能力,为云卡终端按需分配 SIM 卡资源;

l 对云卡终端连接情况进行监控与分析,保证连接质量,可按用户等级提供服务;

I 服务可量化,可计费。

I 不限于原始运营商提供的服务能力,为用户提供更方便、灵活、个性化、场景化的贴心移动连接服务。

#### 云卡云服务的现状与展望

从前面分析来看,SIM 卡云服务就是移动用户最终所希望使用的技术。实际上,业界在该领域已经有很多厂商在辛勤耕耘,并正在为广大用户提供服务。

I 华为天际通:华为的多款手机已支持使用软 SIM 技术的天际通功能,从其官网介绍来看,已支持全球 80 + 国家的精品网络覆盖。然而,可惜的是中国却不在覆盖范围内。从这点来看说,还不是的令人完全满意的云卡平台。

(来源: https://consumer.huawei.com/cn/mobileservices/skytone/)

I 环球漫游: 16 年出入境通信服务,全球出行移动连接服务提供商,网络覆盖超过 210 个国家,通过随身 WiFi 提供服务,并为全球商户提供广告投放服务。

(来源: https://www.vipwifi.com/)

I 优克联:覆盖全球 140 + 国家地区。提供漫游超人租赁服务(免插卡 MiFi)和 GlocalMe 终端产品(免插卡 MiFi 和自带流量世界手机);并提供 GlocalMe Inside 手机嵌入方案,通过云服务平台为合作伙伴提供 PaaS 和 SaaS 云卡方案。

(来源: https://www.ucloudlink.com/html/service-local-mobile-data/)



图 10 优克联云卡全球覆盖图

I 漫游宝(Skyroam):提供无需插卡的随身 WiFi,覆盖全球 130 + 国家,并提供 VPN 服务,覆盖 16 个国家。

(来源: https://www.skyroam.com/wifi-pricing)

I 小米全球上网:通过第三方提供全球上网服务,有的手机通过红茶移动提供,有的通过优克联的 GlocalMe Inside 技术提供,使用方式与华为天际通相同,网络覆盖与技术提供商有关。

I 红茶移动:使用 eSIM 技术,提供 CaaS 服务平台,采用 eSIM 技术,为主要手机品牌提供 SIM 卡服务,无自主终端,网络覆盖 100 + 国家和地区。

(来源: https://www.redteamobile.com/)

目前看来,华为、小米等厂商主要业务在手机,上网也主要为手机服务,云卡服务平台不是其主要业务方向。环球 漫游、漫游宝通过自身 MiFi 产品提供上网服务,以自主运营、直销服务的方式对外,无法形成服务全球的云卡服 务平台。红茶移动基于 eSIM 技术,通过 CaaS 提供基础卡服务,在 eSIM 还没有供应量和承接终端的情况下,多 数情况下采用软卡技术提供,服务比较专注,对最终用户的体验和触达还不够。尽管通过手机厂商,网上公布有 2.5 亿以上的装机,但实际使用人数不多。优克联提供的云卡平台,广泛支持远程物理卡、eSIM 卡和软卡,自营的 漫游超人 Mifi 租赁业务在国内占有率最大,以 PaaS 服务和 SaaS 服务方式,面向最终用户和合作伙伴,构建全生 态链的云卡服务,是值得期待的为移动用户提供贴心管家式云卡服务平台的公司。

云卡云服务平台的未来会怎么样?互联网的游戏规则就是用脚投票,最终用户说了算,谁能将用户服务好,谁就是赢到最后的玩家。但无论如何,云卡云服务平台就是最终用户最喜欢的平台,有用户需求在,云卡云服务平台一起会发展起来的。(署名:龚智辉)